Nuprl Lemma : left-convex3

e:OrientedPlane. ∀b,p,q,x,z:Point.  (q leftof pb  Colinear(p;b;z)  z_q_x  leftof pb)


Proof




Definitions occuring in Statement :  oriented-plane: OrientedPlane geo-colinear: Colinear(a;b;c) geo-left: leftof bc geo-between: a_b_c geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  uimplies: supposing a guard: {T} subtype_rel: A ⊆B uall: [x:A]. B[x] prop: member: t ∈ T implies:  Q all: x:A. B[x] and: P ∧ Q oriented-plane: OrientedPlane or: P ∨ Q euclidean-plane: EuclideanPlane false: False cand: c∧ B not: ¬A geo-colinear: Colinear(a;b;c) geo-lsep: bc subtract: m cons: [a b] select: L[n] true: True squash: T less_than: a < b less_than': less_than'(a;b) le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} top: Top l_all: (∀x∈L.P[x]) geo-colinear-set: geo-colinear-set(e; L) basic-geometry-: BasicGeometry- exists: x:A. B[x] rev_implies:  Q iff: ⇐⇒ Q
Lemmas referenced :  geo-point_wf geo-left_wf geo-colinear_wf geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf oriented-plane_wf subtype_rel_transitivity oriented-plane-subtype euclidean-plane-subtype euclidean-plane-structure-subtype geo-between_wf left-implies-sep euclidean-plane-axioms geo-sep_wf geo-sep-or not_wf geo-between-symmetry colinear-lsep' colinear-lsep geo-between-sep geo-sep-sym lsep-implies-sep lelt_wf false_wf length_of_nil_lemma length_of_cons_lemma geo-left-axioms_wf basic-geo-axioms_wf subtype_rel_self geo-between-implies-colinear geo-colinear-is-colinear-set not-left-and-right lsep-opposite-iff geo-between-exchange3 oriented-colinear-trans not-lsep-iff-colinear
Rules used in proof :  because_Cache sqequalRule independent_isectElimination instantiate hypothesis applyEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_functionElimination productElimination dependent_functionElimination unionElimination dependent_set_memberEquality rename setElimination productEquality voidElimination independent_pairFormation inrFormation baseClosed imageMemberEquality natural_numberEquality voidEquality isect_memberEquality cumulativity setEquality inlFormation

Latex:
\mforall{}e:OrientedPlane.  \mforall{}b,p,q,x,z:Point.    (q  leftof  pb  {}\mRightarrow{}  Colinear(p;b;z)  {}\mRightarrow{}  z\_q\_x  {}\mRightarrow{}  x  leftof  pb)



Date html generated: 2017_10_02-PM-04_48_01
Last ObjectModification: 2017_08_07-PM-00_12_38

Theory : euclidean!plane!geometry


Home Index