Nuprl Lemma : line-sep-from-point-triangle_wf
∀g:ProjectivePlane. ∀l:Line. ∀a,b,c:Point.  (l ≠ PΔ(a;b;c) ∈ ℙ)
Proof
Definitions occuring in Statement : 
line-sep-from-point-triangle: l ≠ PΔ(a;b;c)
, 
projective-plane: ProjectivePlane
, 
pgeo-line: Line
, 
pgeo-point: Point
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
line-sep-from-point-triangle: l ≠ PΔ(a;b;c)
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
point-triangle_wf, 
pgeo-plsep_wf, 
pgeo-point_wf, 
pgeo-primitives_wf, 
projective-plane-structure_wf, 
projective-plane-structure-complete_wf, 
projective-plane_wf, 
subtype_rel_transitivity, 
projective-plane-subtype, 
projective-plane-structure-complete_subtype, 
projective-plane-structure_subtype, 
pgeo-line_wf, 
all_wf
Rules used in proof : 
dependent_functionElimination, 
productEquality, 
because_Cache, 
lambdaEquality, 
independent_isectElimination, 
instantiate, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
sqequalRule, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}g:ProjectivePlane.  \mforall{}l:Line.  \mforall{}a,b,c:Point.    (l  \mneq{}  P\mDelta{}(a;b;c)  \mmember{}  \mBbbP{})
Date html generated:
2018_05_22-PM-00_50_23
Last ObjectModification:
2017_12_01-PM-03_12_06
Theory : euclidean!plane!geometry
Home
Index