Nuprl Lemma : lsep-colinear-sep1
∀g:OrientedPlane. ∀a,b,c:Point. ∀y:{y:Point| Colinear(y;b;c)} .  (a # bc 
⇒ a ≠ y)
Proof
Definitions occuring in Statement : 
oriented-plane: OrientedPlane
, 
geo-lsep: a # bc
, 
geo-colinear: Colinear(a;b;c)
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
uimplies: b supposing a
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
prop: ℙ
Lemmas referenced : 
lsep-colinear-sep, 
sq_stable__colinear, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
oriented-plane-subtype, 
subtype_rel_transitivity, 
oriented-plane_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-lsep_wf, 
geo-colinear_wf, 
geo-point_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
setElimination, 
rename, 
applyEquality, 
instantiate, 
isectElimination, 
independent_isectElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
universeIsType, 
setIsType, 
inhabitedIsType, 
because_Cache
Latex:
\mforall{}g:OrientedPlane.  \mforall{}a,b,c:Point.  \mforall{}y:\{y:Point|  Colinear(y;b;c)\}  .    (a  \#  bc  {}\mRightarrow{}  a  \mneq{}  y)
Date html generated:
2019_10_16-PM-01_15_15
Last ObjectModification:
2018_10_25-AM-11_20_29
Theory : euclidean!plane!geometry
Home
Index