Nuprl Lemma : lsep-colinear-sep1

g:OrientedPlane. ∀a,b,c:Point. ∀y:{y:Point| Colinear(y;b;c)} .  (a bc  a ≠ y)


Proof




Definitions occuring in Statement :  oriented-plane: OrientedPlane geo-lsep: bc geo-colinear: Colinear(a;b;c) geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T subtype_rel: A ⊆B uall: [x:A]. B[x] guard: {T} uimplies: supposing a sq_stable: SqStable(P) squash: T prop:
Lemmas referenced :  lsep-colinear-sep sq_stable__colinear euclidean-plane-structure-subtype euclidean-plane-subtype oriented-plane-subtype subtype_rel_transitivity oriented-plane_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-lsep_wf geo-colinear_wf geo-point_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis setElimination rename applyEquality instantiate isectElimination independent_isectElimination sqequalRule imageMemberEquality baseClosed imageElimination universeIsType setIsType inhabitedIsType because_Cache

Latex:
\mforall{}g:OrientedPlane.  \mforall{}a,b,c:Point.  \mforall{}y:\{y:Point|  Colinear(y;b;c)\}  .    (a  \#  bc  {}\mRightarrow{}  a  \mneq{}  y)



Date html generated: 2019_10_16-PM-01_15_15
Last ObjectModification: 2018_10_25-AM-11_20_29

Theory : euclidean!plane!geometry


Home Index