Nuprl Lemma : not-out-if-lsep

g:EuclideanPlane. ∀a,b,c:Point.  (a bc  out(b ac)))


Proof




Definitions occuring in Statement :  geo-out: out(p ab) euclidean-plane: EuclideanPlane geo-lsep: bc geo-point: Point all: x:A. B[x] not: ¬A implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q not: ¬A false: False member: t ∈ T uall: [x:A]. B[x] basic-geometry: BasicGeometry prop: subtype_rel: A ⊆B guard: {T} uimplies: supposing a
Lemmas referenced :  not-lsep-if-out geo-out_wf geo-lsep_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-point_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination hypothesisEquality independent_functionElimination hypothesis voidElimination because_Cache universeIsType isectElimination sqequalRule applyEquality instantiate independent_isectElimination inhabitedIsType

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c:Point.    (a  \#  bc  {}\mRightarrow{}  (\mneg{}out(b  ac)))



Date html generated: 2019_10_16-PM-01_23_25
Last ObjectModification: 2019_09_27-PM-05_55_10

Theory : euclidean!plane!geometry


Home Index