Nuprl Lemma : not-lsep-if-out

g:EuclideanPlane. ∀a,b,c:Point.  (out(b ac)  bc))


Proof




Definitions occuring in Statement :  geo-out: out(p ab) euclidean-plane: EuclideanPlane geo-lsep: bc geo-point: Point all: x:A. B[x] not: ¬A implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q not: ¬A false: False member: t ∈ T basic-geometry: BasicGeometry geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) less_than: a < b squash: T true: True uall: [x:A]. B[x] select: L[n] cons: [a b] subtract: m iff: ⇐⇒ Q rev_implies:  Q subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop:
Lemmas referenced :  geo-colinear-is-colinear-set geo-out-colinear length_of_cons_lemma istype-void length_of_nil_lemma istype-false istype-le istype-less_than not-lsep-iff-colinear geo-lsep_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-out_wf geo-point_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination hypothesisEquality independent_functionElimination sqequalRule because_Cache hypothesis isect_memberEquality_alt voidElimination dependent_set_memberEquality_alt natural_numberEquality independent_pairFormation imageMemberEquality baseClosed productIsType isectElimination productElimination universeIsType applyEquality instantiate independent_isectElimination inhabitedIsType

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c:Point.    (out(b  ac)  {}\mRightarrow{}  (\mneg{}a  \#  bc))



Date html generated: 2019_10_16-PM-01_23_17
Last ObjectModification: 2018_11_08-PM-01_57_54

Theory : euclidean!plane!geometry


Home Index