Nuprl Lemma : not-lsep-if-out
∀g:EuclideanPlane. ∀a,b,c:Point.  (out(b ac) 
⇒ (¬a # bc))
Proof
Definitions occuring in Statement : 
geo-out: out(p ab)
, 
euclidean-plane: EuclideanPlane
, 
geo-lsep: a # bc
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
member: t ∈ T
, 
basic-geometry: BasicGeometry
, 
geo-colinear-set: geo-colinear-set(e; L)
, 
l_all: (∀x∈L.P[x])
, 
top: Top
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
uall: ∀[x:A]. B[x]
, 
select: L[n]
, 
cons: [a / b]
, 
subtract: n - m
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
Lemmas referenced : 
geo-colinear-is-colinear-set, 
geo-out-colinear, 
length_of_cons_lemma, 
istype-void, 
length_of_nil_lemma, 
istype-false, 
istype-le, 
istype-less_than, 
not-lsep-iff-colinear, 
geo-lsep_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-out_wf, 
geo-point_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
sqequalRule, 
because_Cache, 
hypothesis, 
isect_memberEquality_alt, 
voidElimination, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
productIsType, 
isectElimination, 
productElimination, 
universeIsType, 
applyEquality, 
instantiate, 
independent_isectElimination, 
inhabitedIsType
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c:Point.    (out(b  ac)  {}\mRightarrow{}  (\mneg{}a  \#  bc))
Date html generated:
2019_10_16-PM-01_23_17
Last ObjectModification:
2018_11_08-PM-01_57_54
Theory : euclidean!plane!geometry
Home
Index