Nuprl Lemma : obtuse-angle_wf
∀[e:GeometryPrimitives]. ∀[a,b,c:Point].  (Obtuse(a;b;c) ∈ ℙ)
Proof
Definitions occuring in Statement : 
obtuse-angle: Obtuse(a;b;c)
, 
geo-primitives: GeometryPrimitives
, 
geo-point: Point
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
obtuse-angle: Obtuse(a;b;c)
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
geo-point_wf, 
geo-midpoint_wf, 
geo-gt_wf, 
geo-primitives_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
functionEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[e:GeometryPrimitives].  \mforall{}[a,b,c:Point].    (Obtuse(a;b;c)  \mmember{}  \mBbbP{})
Date html generated:
2018_05_22-AM-11_52_23
Last ObjectModification:
2018_03_28-PM-02_40_03
Theory : euclidean!plane!geometry
Home
Index