Nuprl Lemma : outer-Pasch-ext
∀e:EuclideanPlane. ∀a,b:Point. ∀c:{c:Point| a_b_c} . ∀x:Point. ∀y:{y:Point| b-x-y} .
  (x # ab 
⇒ (∃p:Point [(a_x_p ∧ c_p_y)]))
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
geo-lsep: a # bc
, 
geo-strict-between: a-b-c
, 
geo-between: a_b_c
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
member: t ∈ T
, 
ifthenelse: if b then t else f fi 
, 
outer-Pasch, 
plane-sep-imp-Opasch_left, 
use-plane-sep, 
geo-strict-between-implies-between, 
geo-sep-sym, 
geo-strict-between-sep3, 
sq_stable__geo-strict-between, 
sq_stable__geo-between, 
left-convex, 
sq_stable__and, 
sq_stable__colinear
Lemmas referenced : 
outer-Pasch, 
plane-sep-imp-Opasch_left, 
use-plane-sep, 
geo-strict-between-implies-between, 
geo-sep-sym, 
geo-strict-between-sep3, 
sq_stable__geo-strict-between, 
sq_stable__geo-between, 
left-convex, 
sq_stable__and, 
sq_stable__colinear
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b:Point.  \mforall{}c:\{c:Point|  a\_b\_c\}  .  \mforall{}x:Point.  \mforall{}y:\{y:Point|  b-x-y\}  .
    (x  \#  ab  {}\mRightarrow{}  (\mexists{}p:Point  [(a\_x\_p  \mwedge{}  c\_p\_y)]))
Date html generated:
2019_10_16-PM-01_39_46
Last ObjectModification:
2019_08_26-PM-09_57_08
Theory : euclidean!plane!geometry
Home
Index