Nuprl Lemma : outer-Pasch-ext

e:EuclideanPlane. ∀a,b:Point. ∀c:{c:Point| a_b_c} . ∀x:Point. ∀y:{y:Point| b-x-y} .
  (x ab  (∃p:Point [(a_x_p ∧ c_p_y)]))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-lsep: bc geo-strict-between: a-b-c geo-between: a_b_c geo-point: Point all: x:A. B[x] sq_exists: x:A [B[x]] implies:  Q and: P ∧ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  member: t ∈ T ifthenelse: if then else fi  outer-Pasch plane-sep-imp-Opasch_left use-plane-sep geo-strict-between-implies-between geo-sep-sym geo-strict-between-sep3 sq_stable__geo-strict-between sq_stable__geo-between left-convex sq_stable__and sq_stable__colinear
Lemmas referenced :  outer-Pasch plane-sep-imp-Opasch_left use-plane-sep geo-strict-between-implies-between geo-sep-sym geo-strict-between-sep3 sq_stable__geo-strict-between sq_stable__geo-between left-convex sq_stable__and sq_stable__colinear
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b:Point.  \mforall{}c:\{c:Point|  a\_b\_c\}  .  \mforall{}x:Point.  \mforall{}y:\{y:Point|  b-x-y\}  .
    (x  \#  ab  {}\mRightarrow{}  (\mexists{}p:Point  [(a\_x\_p  \mwedge{}  c\_p\_y)]))



Date html generated: 2019_10_16-PM-01_39_46
Last ObjectModification: 2019_08_26-PM-09_57_08

Theory : euclidean!plane!geometry


Home Index