Nuprl Lemma : pgeo-lsep-implies-plsep_dual

g:ProjectivePlane. ∀p:Line. ∀l,m:Point. ∀s:l ≠ m.  (l  p ≠ l ∨  m ≠ p)


Proof




Definitions occuring in Statement :  projective-plane: ProjectivePlane pgeo-join: p ∨ q pgeo-lsep: l ≠ m pgeo-psep: a ≠ b pgeo-incident: b pgeo-plsep: a ≠ b pgeo-line: Line pgeo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] dual-plane: dual-plane(pg) pgeo-plsep: a ≠ b pgeo-meet: l ∧ m pgeo-psep: a ≠ b pgeo-incident: b pgeo-lsep: l ≠ m pgeo-line: Line pgeo-point: Point complete-pgeo-dual: complete-pgeo-dual(pg;l) pgeo-dual: pg* mk-complete-pgeo: mk-complete-pgeo(pg;p) top: Top eq_atom: =a y ifthenelse: if then else fi  bfalse: ff pgeo-dual-prim: pg* mk-pgeo: mk-pgeo(p; ss; por; lor; j; m; p3; l3) btrue: tt mk-pgeo-prim: mk-pgeo-prim pgeo-join: p ∨ q
Lemmas referenced :  pgeo-lsep-implies-plsep dual-plane_wf rec_select_update_lemma projective-plane_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality hypothesis sqequalRule isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}g:ProjectivePlane.  \mforall{}p:Line.  \mforall{}l,m:Point.  \mforall{}s:l  \mneq{}  m.    (l  I  p  {}\mRightarrow{}  p  \mneq{}  l  \mvee{}  m  {}\mRightarrow{}  m  \mneq{}  p)



Date html generated: 2018_05_22-PM-00_48_22
Last ObjectModification: 2017_12_05-AM-08_36_10

Theory : euclidean!plane!geometry


Home Index