Nuprl Lemma : pgeo-lsep-implies-plsep
∀g:ProjectivePlane. ∀p:Point. ∀l,m:Line. ∀s:l ≠ m.  (p I l 
⇒ p ≠ l ∧ m 
⇒ p ≠ m)
Proof
Definitions occuring in Statement : 
projective-plane: ProjectivePlane
, 
pgeo-meet: l ∧ m
, 
pgeo-lsep: l ≠ m
, 
pgeo-psep: a ≠ b
, 
pgeo-incident: a I b
, 
pgeo-plsep: a ≠ b
, 
pgeo-line: Line
, 
pgeo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
and: P ∧ Q
, 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
cand: A c∧ B
, 
exists: ∃x:A. B[x]
, 
pgeo-lsep: l ≠ m
, 
or: P ∨ Q
, 
false: False
, 
not: ¬A
, 
pgeo-incident: a I b
Lemmas referenced : 
pgeo-line_wf, 
pgeo-lsep_wf, 
pgeo-incident_wf, 
pgeo-point_wf, 
pgeo-meet_wf, 
pgeo-primitives_wf, 
projective-plane-structure_wf, 
projective-plane-structure-complete_wf, 
projective-plane_wf, 
subtype_rel_transitivity, 
projective-plane-subtype, 
projective-plane-structure-complete_subtype, 
projective-plane-structure_subtype, 
pgeo-psep_wf, 
pgeo-meet-incident, 
projective-plane-subtype-basic, 
pgeo-plsep-implies-join, 
LP-sep-or2, 
pgeo-join-implies-plsep, 
use-triangle-axiom1
Rules used in proof : 
productEquality, 
because_Cache, 
setEquality, 
rename, 
setElimination, 
lambdaEquality, 
dependent_functionElimination, 
sqequalRule, 
independent_isectElimination, 
instantiate, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_pairFormation, 
productElimination, 
independent_functionElimination, 
unionElimination, 
voidElimination
Latex:
\mforall{}g:ProjectivePlane.  \mforall{}p:Point.  \mforall{}l,m:Line.  \mforall{}s:l  \mneq{}  m.    (p  I  l  {}\mRightarrow{}  p  \mneq{}  l  \mwedge{}  m  {}\mRightarrow{}  p  \mneq{}  m)
Date html generated:
2018_05_22-PM-00_43_26
Last ObjectModification:
2017_11_28-PM-05_17_48
Theory : euclidean!plane!geometry
Home
Index