Nuprl Lemma : pgeo-plsep-implies-join

g:BasicProjectivePlane. ∀c:Point. ∀l:Line.  (c ≠  (∀a,b:Point. ∀s:a ≠ b.  ((a l ∧ l)  c ≠ a ∨ b)))


Proof




Definitions occuring in Statement :  basic-projective-plane: BasicProjectivePlane pgeo-join: p ∨ q pgeo-psep: a ≠ b pgeo-incident: b pgeo-plsep: a ≠ b pgeo-line: Line pgeo-point: Point all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  uimplies: supposing a guard: {T} subtype_rel: A ⊆B uall: [x:A]. B[x] prop: member: t ∈ T and: P ∧ Q implies:  Q all: x:A. B[x] or: P ∨ Q basic-projective-plane: BasicProjectivePlane false: False not: ¬A pgeo-leq: a ≡ b
Lemmas referenced :  pgeo-line_wf pgeo-plsep_wf pgeo-point_wf pgeo-psep_wf pgeo-primitives_wf projective-plane-structure_wf basic-projective-plane_wf subtype_rel_transitivity basic-projective-plane-subtype projective-plane-structure_subtype pgeo-incident_wf pgeo-join_wf PL-sep-or pgeo-join-to-line
Rules used in proof :  because_Cache sqequalRule independent_isectElimination instantiate hypothesis applyEquality hypothesisEquality isectElimination extract_by_obid introduction cut productEquality thin productElimination sqequalHypSubstitution lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution unionElimination independent_functionElimination setEquality lambdaEquality rename setElimination dependent_functionElimination voidElimination

Latex:
\mforall{}g:BasicProjectivePlane.  \mforall{}c:Point.  \mforall{}l:Line.
    (c  \mneq{}  l  {}\mRightarrow{}  (\mforall{}a,b:Point.  \mforall{}s:a  \mneq{}  b.    ((a  I  l  \mwedge{}  b  I  l)  {}\mRightarrow{}  c  \mneq{}  a  \mvee{}  b)))



Date html generated: 2018_05_22-PM-00_36_08
Last ObjectModification: 2017_11_15-PM-00_54_43

Theory : euclidean!plane!geometry


Home Index