Nuprl Lemma : pgeo-meet-implies-plsep

g:BasicProjectivePlane. ∀a,b,c:Line. ∀s:a ≠ b.  (a ∧ b ≠  (∀l:Point. ((l a ∧ b)  l ≠ c)))


Proof




Definitions occuring in Statement :  basic-projective-plane: BasicProjectivePlane pgeo-meet: l ∧ m pgeo-lsep: l ≠ m pgeo-incident: b pgeo-plsep: a ≠ b pgeo-line: Line pgeo-point: Point all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  pgeo-lsep: l ≠ m pgeo-meet: l ∧ m mk-pgeo-prim: mk-pgeo-prim btrue: tt bfalse: ff ifthenelse: if then else fi  eq_atom: =a y top: Top mk-pgeo: mk-pgeo(p; ss; por; lor; j; m; p3; l3) pgeo-dual-prim: pg* pgeo-point: Point pgeo-psep: a ≠ b pgeo-join: p ∨ q pgeo-line: Line pgeo-incident: b pgeo-plsep: a ≠ b pgeo-dual: pg* uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x]
Lemmas referenced :  basic-projective-plane_wf rec_select_update_lemma pgeo-dual_wf2 pgeo-join-implies-plsep
Rules used in proof :  voidEquality voidElimination isect_memberEquality sqequalRule hypothesis hypothesisEquality isectElimination thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}g:BasicProjectivePlane.  \mforall{}a,b,c:Line.  \mforall{}s:a  \mneq{}  b.
    (a  \mwedge{}  b  \mneq{}  c  {}\mRightarrow{}  (\mforall{}l:Point.  ((l  I  a  \mwedge{}  l  I  b)  {}\mRightarrow{}  l  \mneq{}  c)))



Date html generated: 2018_05_22-PM-00_36_49
Last ObjectModification: 2017_11_30-AM-10_27_32

Theory : euclidean!plane!geometry


Home Index