Nuprl Lemma : pgeo-dual_wf2

[pg:BasicProjectivePlane]. (pg* ∈ BasicProjectivePlane)


Proof




Definitions occuring in Statement :  basic-projective-plane: BasicProjectivePlane pgeo-dual: pg* uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T basic-projective-plane: BasicProjectivePlane basic-pgeo-axioms: BasicProjectiveGeometryAxioms(g) all: x:A. B[x] implies:  Q not: ¬A false: False pgeo-dual: pg* pgeo-incident: b pgeo-dual-prim: pg* mk-pgeo: mk-pgeo(p; ss; por; lor; j; m; p3; l3) pgeo-plsep: pgeo-plsep(p; a; b) top: Top eq_atom: =a y ifthenelse: if then else fi  bfalse: ff pgeo-point: Point pgeo-line: Line mk-pgeo-prim: mk-pgeo-prim btrue: tt pgeo-leq: a ≡ b pgeo-peq: a ≡ b pgeo-lsep: l ≠ m pgeo-psep: a ≠ b and: P ∧ Q cand: c∧ B prop: subtype_rel: A ⊆B
Lemmas referenced :  pgeo-dual_wf rec_select_update_lemma not_wf pgeo-leq_wf pgeo-peq_wf pgeo-incident_wf pgeo-line_wf pgeo-point_wf basic-pgeo-axioms_wf projective-plane-structure_subtype basic-projective-plane_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality extract_by_obid isectElimination hypothesisEquality hypothesis lambdaFormation sqequalRule dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_functionElimination productElimination independent_pairFormation productEquality applyEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[pg:BasicProjectivePlane].  (pg*  \mmember{}  BasicProjectivePlane)



Date html generated: 2019_10_16-PM-02_12_22
Last ObjectModification: 2018_08_02-PM-01_22_03

Theory : euclidean!plane!geometry


Home Index