Nuprl Lemma : pgeo-dual_wf
∀[pg:ProjectivePlaneStructure]. (pg* ∈ ProjectivePlaneStructure)
Proof
Definitions occuring in Statement : 
pgeo-dual: pg*
, 
projective-plane-structure: ProjectivePlaneStructure
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
projective-plane-structure: ProjectivePlaneStructure
, 
record+: record+, 
record-select: r.x
, 
subtype_rel: A ⊆r B
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
pgeo-dual: pg*
, 
pgeo-point: Point
, 
pgeo-dual-prim: pg*
, 
mk-pgeo-prim: mk-pgeo-prim, 
record-update: r[x := v]
, 
bfalse: ff
, 
pgeo-line: Line
, 
uimplies: b supposing a
, 
squash: ↓T
, 
pgeo-plsep: pgeo-plsep(p; a; b)
, 
true: True
, 
pgeo-lsep: l ≠ m
, 
pgeo-incident: a I b
, 
top: Top
, 
pgeo-psep: a ≠ b
, 
pgeo-lpsep: a ≠ b
Lemmas referenced : 
subtype_rel_self, 
pgeo-line_wf, 
pgeo-point_wf, 
sq_stable_wf, 
pgeo-plsep_wf, 
pgeo-lsep_wf, 
pgeo-lpsep_wf, 
pgeo-psep_wf, 
pgeo-incident_wf, 
mk-pgeo_wf, 
pgeo-dual-prim_wf, 
subtype_rel-equal, 
rec_select_update_lemma, 
istype-void, 
projective-plane-structure_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
hypothesisEquality, 
sqequalHypSubstitution, 
dependentIntersectionElimination, 
sqequalRule, 
dependentIntersectionEqElimination, 
thin, 
hypothesis, 
applyEquality, 
tokenEquality, 
extract_by_obid, 
isectElimination, 
functionEquality, 
setEquality, 
unionEquality, 
setElimination, 
rename, 
productEquality, 
lambdaEquality_alt, 
functionExtensionality, 
independent_isectElimination, 
imageElimination, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeIsType, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality
Latex:
\mforall{}[pg:ProjectivePlaneStructure].  (pg*  \mmember{}  ProjectivePlaneStructure)
Date html generated:
2019_10_16-PM-02_11_32
Last ObjectModification:
2018_12_13-PM-01_38_48
Theory : euclidean!plane!geometry
Home
Index