Nuprl Lemma : pgeo-dual_wf

[pg:ProjectivePlaneStructure]. (pg* ∈ ProjectivePlaneStructure)


Proof




Definitions occuring in Statement :  pgeo-dual: pg* projective-plane-structure: ProjectivePlaneStructure uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T projective-plane-structure: ProjectivePlaneStructure record+: record+ record-select: r.x subtype_rel: A ⊆B eq_atom: =a y ifthenelse: if then else fi  btrue: tt all: x:A. B[x] prop: or: P ∨ Q implies:  Q exists: x:A. B[x] and: P ∧ Q pgeo-dual: pg* pgeo-point: Point pgeo-dual-prim: pg* mk-pgeo-prim: mk-pgeo-prim record-update: r[x := v] bfalse: ff pgeo-line: Line uimplies: supposing a squash: T pgeo-plsep: pgeo-plsep(p; a; b) true: True pgeo-lsep: l ≠ m pgeo-incident: b top: Top pgeo-psep: a ≠ b pgeo-lpsep: a ≠ b
Lemmas referenced :  subtype_rel_self pgeo-line_wf pgeo-point_wf sq_stable_wf pgeo-plsep_wf pgeo-lsep_wf pgeo-lpsep_wf pgeo-psep_wf pgeo-incident_wf mk-pgeo_wf pgeo-dual-prim_wf subtype_rel-equal rec_select_update_lemma istype-void projective-plane-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut hypothesisEquality sqequalHypSubstitution dependentIntersectionElimination sqequalRule dependentIntersectionEqElimination thin hypothesis applyEquality tokenEquality extract_by_obid isectElimination functionEquality setEquality unionEquality setElimination rename productEquality lambdaEquality_alt functionExtensionality independent_isectElimination imageElimination because_Cache natural_numberEquality imageMemberEquality baseClosed universeIsType dependent_functionElimination isect_memberEquality_alt voidElimination equalityTransitivity equalitySymmetry axiomEquality

Latex:
\mforall{}[pg:ProjectivePlaneStructure].  (pg*  \mmember{}  ProjectivePlaneStructure)



Date html generated: 2019_10_16-PM-02_11_32
Last ObjectModification: 2018_12_13-PM-01_38_48

Theory : euclidean!plane!geometry


Home Index