Nuprl Lemma : pgeo-meet-to-point

g:BasicProjectivePlane. ∀p,q:Line. ∀l:Point. ∀s:p ≠ q.  (l   l ≡ p ∧ q)


Proof




Definitions occuring in Statement :  basic-projective-plane: BasicProjectivePlane pgeo-meet: l ∧ m pgeo-peq: a ≡ b pgeo-lsep: l ≠ m pgeo-incident: b pgeo-line: Line pgeo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  pgeo-leq: a ≡ b guard: {T} false: False cand: c∧ B uimplies: supposing a prop: and: P ∧ Q subtype_rel: A ⊆B basic-projective-plane: BasicProjectivePlane uall: [x:A]. B[x] member: t ∈ T not: ¬A pgeo-peq: a ≡ b implies:  Q all: x:A. B[x]
Lemmas referenced :  pgeo-line_wf pgeo-lsep_wf pgeo-primitives_wf projective-plane-structure_wf basic-projective-plane_wf subtype_rel_transitivity basic-projective-plane-subtype projective-plane-structure_subtype pgeo-psep_wf pgeo-leq_wf pgeo-peq_wf pgeo-meet-incident pgeo-incident_wf pgeo-point_wf pgeo-meet_wf Unique
Rules used in proof :  instantiate voidElimination independent_functionElimination productElimination independent_pairFormation independent_isectElimination productEquality sqequalRule setEquality lambdaEquality applyEquality hypothesis because_Cache rename setElimination isectElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}g:BasicProjectivePlane.  \mforall{}p,q:Line.  \mforall{}l:Point.  \mforall{}s:p  \mneq{}  q.    (l  I  p  {}\mRightarrow{}  l  I  q  {}\mRightarrow{}  l  \mequiv{}  p  \mwedge{}  q)



Date html generated: 2018_05_22-PM-00_36_18
Last ObjectModification: 2017_11_16-PM-03_21_45

Theory : euclidean!plane!geometry


Home Index