Nuprl Lemma : pgeo-order-equiv_rel

pg:ProjectivePlane. ∀l:Line.  EquivRel({p:Point| l} ;p,q.p ≡ q)


Proof




Definitions occuring in Statement :  projective-plane: ProjectivePlane pgeo-peq: a ≡ b pgeo-incident: b pgeo-line: Line pgeo-point: Point equiv_rel: EquivRel(T;x,y.E[x; y]) all: x:A. B[x] set: {x:A| B[x]} 
Definitions unfolded in proof :  uimplies: supposing a trans: Trans(T;x,y.E[x; y]) guard: {T} sym: Sym(T;x,y.E[x; y]) so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B uall: [x:A]. B[x] prop: implies:  Q member: t ∈ T refl: Refl(T;x,y.E[x; y]) cand: c∧ B and: P ∧ Q equiv_rel: EquivRel(T;x,y.E[x; y]) all: x:A. B[x]
Lemmas referenced :  pgeo-primitives_wf projective-plane-structure_wf projective-plane-structure-complete_wf projective-plane_wf subtype_rel_transitivity projective-plane-subtype projective-plane-structure-complete_subtype projective-plane-structure_subtype pgeo-line_wf pgeo-peq_transitivity pgeo-peq_wf pgeo-peq_inversion pgeo-incident_wf pgeo-point_wf set_wf pgeo-peq_weakening
Rules used in proof :  independent_isectElimination instantiate independent_pairFormation lambdaEquality sqequalRule applyEquality isectElimination independent_functionElimination because_Cache hypothesis rename setElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}pg:ProjectivePlane.  \mforall{}l:Line.    EquivRel(\{p:Point|  p  I  l\}  ;p,q.p  \mequiv{}  q)



Date html generated: 2018_05_22-PM-00_58_06
Last ObjectModification: 2018_01_10-AM-10_33_56

Theory : euclidean!plane!geometry


Home Index