Nuprl Lemma : pgeo-order-equiv_rel
∀pg:ProjectivePlane. ∀l:Line.  EquivRel({p:Point| p I l} p,q.p ≡ q)
Proof
Definitions occuring in Statement : 
projective-plane: ProjectivePlane
, 
pgeo-peq: a ≡ b
, 
pgeo-incident: a I b
, 
pgeo-line: Line
, 
pgeo-point: Point
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
uimplies: b supposing a
, 
trans: Trans(T;x,y.E[x; y])
, 
guard: {T}
, 
sym: Sym(T;x,y.E[x; y])
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
refl: Refl(T;x,y.E[x; y])
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
Lemmas referenced : 
pgeo-primitives_wf, 
projective-plane-structure_wf, 
projective-plane-structure-complete_wf, 
projective-plane_wf, 
subtype_rel_transitivity, 
projective-plane-subtype, 
projective-plane-structure-complete_subtype, 
projective-plane-structure_subtype, 
pgeo-line_wf, 
pgeo-peq_transitivity, 
pgeo-peq_wf, 
pgeo-peq_inversion, 
pgeo-incident_wf, 
pgeo-point_wf, 
set_wf, 
pgeo-peq_weakening
Rules used in proof : 
independent_isectElimination, 
instantiate, 
independent_pairFormation, 
lambdaEquality, 
sqequalRule, 
applyEquality, 
isectElimination, 
independent_functionElimination, 
because_Cache, 
hypothesis, 
rename, 
setElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}pg:ProjectivePlane.  \mforall{}l:Line.    EquivRel(\{p:Point|  p  I  l\}  ;p,q.p  \mequiv{}  q)
Date html generated:
2018_05_22-PM-00_58_06
Last ObjectModification:
2018_01_10-AM-10_33_56
Theory : euclidean!plane!geometry
Home
Index