Nuprl Lemma : pgeo-peq-preserves-incidence

g:ProjectivePlane. ∀a,b:Point. ∀l:Line.  (a  a ≡  l)


Proof




Definitions occuring in Statement :  projective-plane: ProjectivePlane pgeo-peq: a ≡ b pgeo-incident: b pgeo-line: Line pgeo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  uimplies: supposing a guard: {T} false: False subtype_rel: A ⊆B uall: [x:A]. B[x] prop: cand: c∧ B and: P ∧ Q member: t ∈ T exists: x:A. B[x] pgeo-psep: a ≠ b pgeo-peq: a ≡ b not: ¬A pgeo-incident: b implies:  Q all: x:A. B[x]
Lemmas referenced :  pgeo-point_wf pgeo-line_wf pgeo-primitives_wf projective-plane-structure_wf basic-projective-plane_wf projective-plane_wf subtype_rel_transitivity projective-plane-subtype basic-projective-plane-subtype projective-plane-structure_subtype pgeo-peq_wf pgeo-plsep_wf pgeo-incident_wf
Rules used in proof :  independent_isectElimination instantiate voidElimination sqequalRule because_Cache applyEquality isectElimination extract_by_obid introduction productEquality independent_pairFormation hypothesis cut hypothesisEquality dependent_pairFormation thin independent_functionElimination sqequalHypSubstitution lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}g:ProjectivePlane.  \mforall{}a,b:Point.  \mforall{}l:Line.    (a  I  l  {}\mRightarrow{}  a  \mequiv{}  b  {}\mRightarrow{}  b  I  l)



Date html generated: 2018_05_22-PM-00_43_55
Last ObjectModification: 2017_11_17-PM-00_07_50

Theory : euclidean!plane!geometry


Home Index