Nuprl Lemma : pgeo-plsep-to-lsep
∀g:ProjectivePlaneStructure. ∀a,b:Line. ∀l:Point.  (l ≠ a 
⇒ l I b 
⇒ b ≠ a)
Proof
Definitions occuring in Statement : 
projective-plane-structure: ProjectivePlaneStructure
, 
pgeo-lsep: l ≠ m
, 
pgeo-incident: a I b
, 
pgeo-plsep: a ≠ b
, 
pgeo-line: Line
, 
pgeo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
pgeo-lsep: l ≠ m
, 
btrue: tt
, 
mk-pgeo-prim: mk-pgeo-prim, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
top: Top
, 
mk-pgeo: mk-pgeo(p; ss; por; lor; j; m; p3; l3)
, 
pgeo-dual-prim: pg*
, 
pgeo-point: Point
, 
pgeo-line: Line
, 
pgeo-plsep: a ≠ b
, 
pgeo-incident: a I b
, 
pgeo-psep: a ≠ b
, 
pgeo-dual: pg*
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
projective-plane-structure_wf, 
rec_select_update_lemma, 
pgeo-dual_wf, 
pgeo-plsep-to-psep
Rules used in proof : 
voidEquality, 
voidElimination, 
isect_memberEquality, 
sqequalRule, 
hypothesis, 
hypothesisEquality, 
isectElimination, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}g:ProjectivePlaneStructure.  \mforall{}a,b:Line.  \mforall{}l:Point.    (l  \mneq{}  a  {}\mRightarrow{}  l  I  b  {}\mRightarrow{}  b  \mneq{}  a)
Date html generated:
2018_05_22-PM-00_35_02
Last ObjectModification:
2017_11_25-AM-08_57_52
Theory : euclidean!plane!geometry
Home
Index