Nuprl Lemma : pgeo-psep-irrefl

e:ProjectivePlane. ∀[a,b:Point].  ¬a ≠ supposing b ∈ Point


Proof




Definitions occuring in Statement :  projective-plane: ProjectivePlane pgeo-psep: a ≠ b pgeo-point: Point uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] not: ¬A equal: t ∈ T
Definitions unfolded in proof :  guard: {T} subtype_rel: A ⊆B prop: pgeo-peq: a ≡ b false: False implies:  Q not: ¬A uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x]
Lemmas referenced :  pgeo-point_wf equal_wf pgeo-primitives_wf projective-plane-structure_wf projective-plane-structure-complete_wf projective-plane_wf subtype_rel_transitivity projective-plane-subtype projective-plane-structure-complete_subtype projective-plane-structure_subtype pgeo-psep_wf pgeo-peq_weakening
Rules used in proof :  equalitySymmetry equalityTransitivity isect_memberEquality because_Cache lambdaEquality sqequalRule independent_isectElimination instantiate applyEquality isectElimination voidElimination hypothesis independent_functionElimination hypothesisEquality dependent_functionElimination sqequalHypSubstitution extract_by_obid thin cut introduction isect_memberFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}e:ProjectivePlane.  \mforall{}[a,b:Point].    \mneg{}a  \mneq{}  b  supposing  a  =  b



Date html generated: 2018_05_22-PM-00_57_35
Last ObjectModification: 2018_01_08-PM-03_28_10

Theory : euclidean!plane!geometry


Home Index