Nuprl Lemma : sep-if-all-lsep
∀g:EuclideanPlane. ∀a,b,c:Point.  (a # bc 
⇒ (∀x:Point. (Colinear(x;b;c) 
⇒ a ≠ x)))
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
geo-lsep: a # bc
, 
geo-colinear: Colinear(a;b;c)
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
oriented-plane: OrientedPlane
Lemmas referenced : 
geo-colinear_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-lsep_wf, 
geo-point_wf, 
lsep-colinear-sep
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
inhabitedIsType, 
because_Cache, 
independent_functionElimination, 
dependent_functionElimination
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c:Point.    (a  \#  bc  {}\mRightarrow{}  (\mforall{}x:Point.  (Colinear(x;b;c)  {}\mRightarrow{}  a  \mneq{}  x)))
Date html generated:
2019_10_16-PM-01_43_05
Last ObjectModification:
2019_08_12-PM-02_57_28
Theory : euclidean!plane!geometry
Home
Index