Nuprl Lemma : sep-if-all-lsep

g:EuclideanPlane. ∀a,b,c:Point.  (a bc  (∀x:Point. (Colinear(x;b;c)  a ≠ x)))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-lsep: bc geo-colinear: Colinear(a;b;c) geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: oriented-plane: OrientedPlane
Lemmas referenced :  geo-colinear_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-lsep_wf geo-point_wf lsep-colinear-sep
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination sqequalRule inhabitedIsType because_Cache independent_functionElimination dependent_functionElimination

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c:Point.    (a  \#  bc  {}\mRightarrow{}  (\mforall{}x:Point.  (Colinear(x;b;c)  {}\mRightarrow{}  a  \mneq{}  x)))



Date html generated: 2019_10_16-PM-01_43_05
Last ObjectModification: 2019_08_12-PM-02_57_28

Theory : euclidean!plane!geometry


Home Index