Step
*
2
1
2
1
of Lemma
ip-between-iff
1. rv : InnerProductSpace
2. a : Point
3. c : Point
4. t : ℝ
5. (r0 < t) ∧ (t < r1)
6. a - t*a + r1 - t*c ≡ r1 - t*a - c
7. c - t*a + r1 - t*c ≡ -(t)*a - c
8. v : Point
9. a - c = v ∈ Point
⊢ ((||r1 - t*v|| * ||-(t)*v||) + r1 - t*v ⋅ -(t)*v) = r0
BY
{ (RWW "rv-norm-mul rv-ip-mul rv-ip-mul2 rv-norm-squared< rnexp2" 0 THENA Auto) }
1
1. rv : InnerProductSpace
2. a : Point
3. c : Point
4. t : ℝ
5. (r0 < t) ∧ (t < r1)
6. a - t*a + r1 - t*c ≡ r1 - t*a - c
7. c - t*a + r1 - t*c ≡ -(t)*a - c
8. v : Point
9. a - c = v ∈ Point
⊢ (((|r1 - t| * ||v||) * |-(t)| * ||v||) + ((r1 - t) * -(t) * ||v|| * ||v||)) = r0
Latex:
Latex:
1.  rv  :  InnerProductSpace
2.  a  :  Point
3.  c  :  Point
4.  t  :  \mBbbR{}
5.  (r0  <  t)  \mwedge{}  (t  <  r1)
6.  a  -  t*a  +  r1  -  t*c  \mequiv{}  r1  -  t*a  -  c
7.  c  -  t*a  +  r1  -  t*c  \mequiv{}  -(t)*a  -  c
8.  v  :  Point
9.  a  -  c  =  v
\mvdash{}  ((||r1  -  t*v||  *  ||-(t)*v||)  +  r1  -  t*v  \mcdot{}  -(t)*v)  =  r0
By
Latex:
(RWW  "rv-norm-mul  rv-ip-mul  rv-ip-mul2  rv-norm-squared<  rnexp2"  0  THENA  Auto)
Home
Index