Step
*
2
1
2
1
1
of Lemma
ip-between-iff
1. rv : InnerProductSpace
2. a : Point
3. c : Point
4. t : ℝ
5. (r0 < t) ∧ (t < r1)
6. a - t*a + r1 - t*c ≡ r1 - t*a - c
7. c - t*a + r1 - t*c ≡ -(t)*a - c
8. v : Point
9. a - c = v ∈ Point
⊢ (((|r1 - t| * ||v||) * |-(t)| * ||v||) + ((r1 - t) * -(t) * ||v|| * ||v||)) = r0
BY
{ ((Assert |r1 - t| = (r1 - t) BY
          (RWO "rabs-of-nonneg" 0 THEN Auto THEN nRAdd ⌜t⌝ 0⋅ THEN Auto))
   THEN (RWO "-1" 0 THENA Auto)
   ) }
1
1. rv : InnerProductSpace
2. a : Point
3. c : Point
4. t : ℝ
5. (r0 < t) ∧ (t < r1)
6. a - t*a + r1 - t*c ≡ r1 - t*a - c
7. c - t*a + r1 - t*c ≡ -(t)*a - c
8. v : Point
9. a - c = v ∈ Point
10. |r1 - t| = (r1 - t)
⊢ ((((r1 - t) * ||v||) * |-(t)| * ||v||) + ((r1 - t) * -(t) * ||v|| * ||v||)) = r0
Latex:
Latex:
1.  rv  :  InnerProductSpace
2.  a  :  Point
3.  c  :  Point
4.  t  :  \mBbbR{}
5.  (r0  <  t)  \mwedge{}  (t  <  r1)
6.  a  -  t*a  +  r1  -  t*c  \mequiv{}  r1  -  t*a  -  c
7.  c  -  t*a  +  r1  -  t*c  \mequiv{}  -(t)*a  -  c
8.  v  :  Point
9.  a  -  c  =  v
\mvdash{}  (((|r1  -  t|  *  ||v||)  *  |-(t)|  *  ||v||)  +  ((r1  -  t)  *  -(t)  *  ||v||  *  ||v||))  =  r0
By
Latex:
((Assert  |r1  -  t|  =  (r1  -  t)  BY
                (RWO  "rabs-of-nonneg"  0  THEN  Auto  THEN  nRAdd  \mkleeneopen{}t\mkleeneclose{}  0\mcdot{}  THEN  Auto))
  THEN  (RWO  "-1"  0  THENA  Auto)
  )
Home
Index