Nuprl Lemma : toptype_wf
∀[X:Space]. (|X| ∈ Type)
Proof
Definitions occuring in Statement : 
toptype: |X|
, 
topspace: Space
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
top: Top
, 
topspace: Space
, 
toptype: |X|
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
topspace_wf, 
pi1_wf_top
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
hypothesis, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
hypothesisEquality, 
independent_pairEquality, 
productElimination, 
universeEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
instantiate, 
thin, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[X:Space].  (|X|  \mmember{}  Type)
Date html generated:
2018_07_29-AM-09_47_39
Last ObjectModification:
2018_06_21-AM-10_02_55
Theory : inner!product!spaces
Home
Index