Step
*
1
1
1
1
of Lemma
fl-all-decomp
1. T : Type
2. eq : EqDecider(T)
3. phi : Point(face-lattice(T;eq))
4. i : T
5. ∀x,y:Point(face-lattice(T;eq)).  (x ≤ y 
⇒ y ≤ x 
⇒ (x = y ∈ Point(face-lattice(T;eq))))
6. Point(face-lattice(T;eq)) ⊆r fset(fset(T + T))
7. s : fset(T + T)
8. s ∈ phi
9. inl i ∈ s
⊢ ↓∃t:fset(T + T). (t ∈ phi ∧ (i=0) ∧ t ⊆ s)
BY
{ (D 0 THEN D 0 With ⌜s⌝  THEN Auto THEN Try ((BLemma `f-subset_weakening` THEN Auto))) }
1
1. T : Type
2. eq : EqDecider(T)
3. phi : Point(face-lattice(T;eq))
4. i : T
5. ∀x,y:Point(face-lattice(T;eq)).  (x ≤ y 
⇒ y ≤ x 
⇒ (x = y ∈ Point(face-lattice(T;eq))))
6. Point(face-lattice(T;eq)) ⊆r fset(fset(T + T))
7. s : fset(T + T)
8. s ∈ phi
9. inl i ∈ s
⊢ s ∈ phi ∧ (i=0)
Latex:
Latex:
1.  T  :  Type
2.  eq  :  EqDecider(T)
3.  phi  :  Point(face-lattice(T;eq))
4.  i  :  T
5.  \mforall{}x,y:Point(face-lattice(T;eq)).    (x  \mleq{}  y  {}\mRightarrow{}  y  \mleq{}  x  {}\mRightarrow{}  (x  =  y))
6.  Point(face-lattice(T;eq))  \msubseteq{}r  fset(fset(T  +  T))
7.  s  :  fset(T  +  T)
8.  s  \mmember{}  phi
9.  inl  i  \mmember{}  s
\mvdash{}  \mdownarrow{}\mexists{}t:fset(T  +  T).  (t  \mmember{}  phi  \mwedge{}  (i=0)  \mwedge{}  t  \msubseteq{}  s)
By
Latex:
(D  0  THEN  D  0  With  \mkleeneopen{}s\mkleeneclose{}    THEN  Auto  THEN  Try  ((BLemma  `f-subset\_weakening`  THEN  Auto)))
Home
Index