Nuprl Lemma : fl-all-decomp
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[phi:Point(face-lattice(T;eq))]. ∀[i:T].
  (phi = (∀i.phi) ∨ phi ∧ (i=0) ∨ phi ∧ (i=1) ∈ Point(face-lattice(T;eq)))
Proof
Definitions occuring in Statement : 
fl-all: (∀i.phi)
, 
face-lattice1: (x=1)
, 
face-lattice0: (x=0)
, 
face-lattice: face-lattice(T;eq)
, 
lattice-join: a ∨ b
, 
lattice-meet: a ∧ b
, 
lattice-point: Point(l)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
order: Order(T;x,y.R[x; y])
, 
and: P ∧ Q
, 
anti_sym: AntiSym(T;x,y.R[x; y])
, 
implies: P 
⇒ Q
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
top: Top
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
guard: {T}
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
squash: ↓T
, 
face-lattice: face-lattice(T;eq)
, 
face-lattice0: (x=0)
, 
fset-constrained-ac-glb: glb(P;ac1;ac2)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uiff: uiff(P;Q)
, 
fset-constrained-image: f"(s) s.t. P
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
fset-member: a ∈ s
, 
deq-member: x ∈b L
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
empty-fset: {}
, 
nil: []
, 
f-proper-subset: xs ⊆≠ ys
, 
f-subset: xs ⊆ ys
, 
face-lattice1: (x=1)
, 
fl-all: (∀i.phi)
, 
fl-filter: fl-filter(s;x.Q[x])
, 
cal-filter: cal-filter(s;x.P[x])
Lemmas referenced : 
lattice-le-order, 
face-lattice_wf, 
bdd-distributive-lattice-subtype-lattice, 
lattice-join_wf, 
fl-all_wf, 
lattice-meet_wf, 
face-lattice0_wf, 
face-lattice1_wf, 
lattice-point_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
deq_wf, 
fl-point-sq, 
fset_wf, 
assert_wf, 
fset-antichain_wf, 
union-deq_wf, 
fset-all_wf, 
fset-contains-none_wf, 
face-lattice-constraints_wf, 
implies-le-face-lattice-join3, 
fset-member_wf, 
deq-fset_wf, 
decidable__fset-member, 
squash_wf, 
exists_wf, 
f-subset_wf, 
f-subset_weakening, 
free-dlwc-meet, 
member-fset-minimals, 
f-proper-subset-dec_wf, 
f-union_wf, 
fset-constrained-image_wf, 
fset-union_wf, 
fset-singleton_wf, 
ifthenelse_wf, 
empty-fset_wf, 
member-f-union, 
member-fset-singleton, 
fset-extensionality, 
member-fset-union, 
or_wf, 
and_wf, 
fset-member_witness, 
bool_wf, 
eqtt_to_assert, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
mem_empty_lemma, 
fset-all-iff, 
iff_weakening_uiff, 
bnot_wf, 
isect_wf, 
iff_transitivity, 
not_wf, 
f-proper-subset_wf, 
assert_of_bnot, 
assert-f-proper-subset-dec, 
assert_witness, 
bool_cases, 
f-subset_transitivity, 
f-subset-union, 
assert-fset-antichain, 
member-fset-filter, 
band_wf, 
deq-fset-member_wf, 
assert_of_band, 
assert-deq-fset-member, 
lattice-join-le, 
lattice-meet-le, 
face-lattice-subset-le, 
fl-filter-subset
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
sqequalRule, 
productElimination, 
because_Cache, 
independent_functionElimination, 
isect_memberEquality, 
axiomEquality, 
instantiate, 
lambdaEquality, 
productEquality, 
universeEquality, 
independent_isectElimination, 
voidElimination, 
voidEquality, 
setElimination, 
rename, 
setEquality, 
unionEquality, 
lambdaFormation, 
inlEquality, 
unionElimination, 
inrFormation, 
inlFormation, 
dependent_pairFormation, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
addLevel, 
orFunctionality, 
promote_hyp, 
hyp_replacement, 
dependent_set_memberEquality, 
applyLambdaEquality, 
levelHypothesis, 
independent_pairEquality, 
equalityElimination, 
impliesFunctionality, 
imageElimination, 
inrEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[phi:Point(face-lattice(T;eq))].  \mforall{}[i:T].
    (phi  =  (\mforall{}i.phi)  \mvee{}  phi  \mwedge{}  (i=0)  \mvee{}  phi  \mwedge{}  (i=1))
Date html generated:
2017_10_05-AM-00_40_59
Last ObjectModification:
2017_07_28-AM-09_16_18
Theory : lattices
Home
Index