Nuprl Lemma : fl-all-decomp

[T:Type]. ∀[eq:EqDecider(T)]. ∀[phi:Point(face-lattice(T;eq))]. ∀[i:T].
  (phi (∀i.phi) ∨ phi ∧ (i=0) ∨ phi ∧ (i=1) ∈ Point(face-lattice(T;eq)))


Proof




Definitions occuring in Statement :  fl-all: (∀i.phi) face-lattice1: (x=1) face-lattice0: (x=0) face-lattice: face-lattice(T;eq) lattice-join: a ∨ b lattice-meet: a ∧ b lattice-point: Point(l) deq: EqDecider(T) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] subtype_rel: A ⊆B order: Order(T;x,y.R[x; y]) and: P ∧ Q anti_sym: AntiSym(T;x,y.R[x; y]) implies:  Q bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: so_apply: x[s] uimplies: supposing a top: Top decidable: Dec(P) or: P ∨ Q guard: {T} exists: x:A. B[x] cand: c∧ B squash: T face-lattice: face-lattice(T;eq) face-lattice0: (x=0) fset-constrained-ac-glb: glb(P;ac1;ac2) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uiff: uiff(P;Q) fset-constrained-image: f"(s) s.t. P iff: ⇐⇒ Q rev_implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b false: False not: ¬A fset-member: a ∈ s deq-member: x ∈b L reduce: reduce(f;k;as) list_ind: list_ind empty-fset: {} nil: [] f-proper-subset: xs ⊆≠ ys f-subset: xs ⊆ ys face-lattice1: (x=1) fl-all: (∀i.phi) fl-filter: fl-filter(s;x.Q[x]) cal-filter: cal-filter(s;x.P[x])
Lemmas referenced :  lattice-le-order face-lattice_wf bdd-distributive-lattice-subtype-lattice lattice-join_wf fl-all_wf lattice-meet_wf face-lattice0_wf face-lattice1_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf deq_wf fl-point-sq fset_wf assert_wf fset-antichain_wf union-deq_wf fset-all_wf fset-contains-none_wf face-lattice-constraints_wf implies-le-face-lattice-join3 fset-member_wf deq-fset_wf decidable__fset-member squash_wf exists_wf f-subset_wf f-subset_weakening free-dlwc-meet member-fset-minimals f-proper-subset-dec_wf f-union_wf fset-constrained-image_wf fset-union_wf fset-singleton_wf ifthenelse_wf empty-fset_wf member-f-union member-fset-singleton fset-extensionality member-fset-union or_wf and_wf fset-member_witness bool_wf eqtt_to_assert eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot mem_empty_lemma fset-all-iff iff_weakening_uiff bnot_wf isect_wf iff_transitivity not_wf f-proper-subset_wf assert_of_bnot assert-f-proper-subset-dec assert_witness bool_cases f-subset_transitivity f-subset-union assert-fset-antichain member-fset-filter band_wf deq-fset-member_wf assert_of_band assert-deq-fset-member lattice-join-le lattice-meet-le face-lattice-subset-le fl-filter-subset
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination cumulativity hypothesisEquality hypothesis applyEquality sqequalRule productElimination because_Cache independent_functionElimination isect_memberEquality axiomEquality instantiate lambdaEquality productEquality universeEquality independent_isectElimination voidElimination voidEquality setElimination rename setEquality unionEquality lambdaFormation inlEquality unionElimination inrFormation inlFormation dependent_pairFormation independent_pairFormation imageMemberEquality baseClosed equalityTransitivity equalitySymmetry addLevel orFunctionality promote_hyp hyp_replacement dependent_set_memberEquality applyLambdaEquality levelHypothesis independent_pairEquality equalityElimination impliesFunctionality imageElimination inrEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[phi:Point(face-lattice(T;eq))].  \mforall{}[i:T].
    (phi  =  (\mforall{}i.phi)  \mvee{}  phi  \mwedge{}  (i=0)  \mvee{}  phi  \mwedge{}  (i=1))



Date html generated: 2017_10_05-AM-00_40_59
Last ObjectModification: 2017_07_28-AM-09_16_18

Theory : lattices


Home Index