Nuprl Lemma : fl-all_wf
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[phi:Point(face-lattice(T;eq))]. ∀[i:T].  ((∀i.phi) ∈ Point(face-lattice(T;eq)))
Proof
Definitions occuring in Statement : 
fl-all: (∀i.phi)
, 
face-lattice: face-lattice(T;eq)
, 
lattice-point: Point(l)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
fl-all: (∀i.phi)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
prop: ℙ
, 
and: P ∧ Q
, 
uimplies: b supposing a
Lemmas referenced : 
deq_wf, 
lattice-join_wf, 
lattice-meet_wf, 
equal_wf, 
uall_wf, 
bounded-lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
lattice-axioms_wf, 
lattice-structure_wf, 
bounded-lattice-structure_wf, 
subtype_rel_set, 
face-lattice_wf, 
lattice-point_wf, 
fset_wf, 
union-deq_wf, 
deq-fset-member_wf, 
bnot_wf, 
band_wf, 
fl-filter_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
unionEquality, 
hypothesis, 
inlEquality, 
inrEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
cumulativity, 
applyEquality, 
instantiate, 
productEquality, 
universeEquality, 
independent_isectElimination
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[phi:Point(face-lattice(T;eq))].  \mforall{}[i:T].
    ((\mforall{}i.phi)  \mmember{}  Point(face-lattice(T;eq)))
Date html generated:
2016_05_18-AM-11_41_47
Last ObjectModification:
2016_01_15-PM-05_40_14
Theory : lattices
Home
Index