Nuprl Lemma : fl-filter_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[Q:{x:fset(T T)| 
                                    ↑fset-contains-none(union-deq(T;T;eq;eq);x;x.face-lattice-constraints(x))}  ⟶ 𝔹].
[s:Point(face-lattice(T;eq))].
  (fl-filter(s;x.Q[x]) ∈ Point(face-lattice(T;eq)))


Proof




Definitions occuring in Statement :  fl-filter: fl-filter(s;x.Q[x]) face-lattice: face-lattice(T;eq) face-lattice-constraints: face-lattice-constraints(x) lattice-point: Point(l) fset-contains-none: fset-contains-none(eq;s;x.Cs[x]) fset: fset(T) union-deq: union-deq(A;B;a;b) deq: EqDecider(T) assert: b bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fl-filter: fl-filter(s;x.Q[x]) so_lambda: λ2x.t[x] so_apply: x[s] lattice-point: Point(l) record-select: r.x constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) all: x:A. B[x] prop: fset-contains-none: fset-contains-none(eq;s;x.Cs[x]) fset-contains-none-of: fset-contains-none-of(eq;s;cs) fset-null: fset-null(s) null: null(as) fset-filter: {x ∈ P[x]} filter: filter(P;l) reduce: reduce(f;k;as) list_ind: list_ind f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice and: P ∧ Q uimplies: supposing a
Lemmas referenced :  cal-filter_wf union-deq_wf fset-contains-none_wf face-lattice-constraints_wf fset_wf assert_wf lattice-point_wf face-lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf bool_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin unionEquality cumulativity hypothesisEquality because_Cache hypothesis lambdaEquality lambdaFormation applyEquality setElimination rename functionExtensionality setEquality dependent_set_memberEquality axiomEquality equalityTransitivity equalitySymmetry instantiate productEquality independent_isectElimination isect_memberEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].
\mforall{}[Q:\{x:fset(T  +  T)|  \muparrow{}fset-contains-none(union-deq(T;T;eq;eq);x;x.face-lattice-constraints(x))\} 
        {}\mrightarrow{}  \mBbbB{}].  \mforall{}[s:Point(face-lattice(T;eq))].
    (fl-filter(s;x.Q[x])  \mmember{}  Point(face-lattice(T;eq)))



Date html generated: 2018_05_22-PM-09_54_56
Last ObjectModification: 2018_05_20-PM-10_12_29

Theory : lattices


Home Index