Nuprl Lemma : fl-filter_wf
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[Q:{x:fset(T + T)| 
                                    ↑fset-contains-none(union-deq(T;T;eq;eq);x;x.face-lattice-constraints(x))}  ⟶ 𝔹].
∀[s:Point(face-lattice(T;eq))].
  (fl-filter(s;x.Q[x]) ∈ Point(face-lattice(T;eq)))
Proof
Definitions occuring in Statement : 
fl-filter: fl-filter(s;x.Q[x]), 
face-lattice: face-lattice(T;eq), 
face-lattice-constraints: face-lattice-constraints(x), 
lattice-point: Point(l), 
fset-contains-none: fset-contains-none(eq;s;x.Cs[x]), 
fset: fset(T), 
union-deq: union-deq(A;B;a;b), 
deq: EqDecider(T), 
assert: ↑b, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
member: t ∈ T, 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x], 
union: left + right, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
fl-filter: fl-filter(s;x.Q[x]), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
lattice-point: Point(l), 
record-select: r.x, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
all: ∀x:A. B[x], 
prop: ℙ, 
fset-contains-none: fset-contains-none(eq;s;x.Cs[x]), 
fset-contains-none-of: fset-contains-none-of(eq;s;cs), 
fset-null: fset-null(s), 
null: null(as), 
fset-filter: {x ∈ s | P[x]}, 
filter: filter(P;l), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
f-union: f-union(domeq;rngeq;s;x.g[x]), 
list_accum: list_accum, 
subtype_rel: A ⊆r B, 
bdd-distributive-lattice: BoundedDistributiveLattice, 
and: P ∧ Q, 
uimplies: b supposing a
Lemmas referenced : 
cal-filter_wf, 
union-deq_wf, 
fset-contains-none_wf, 
face-lattice-constraints_wf, 
fset_wf, 
assert_wf, 
lattice-point_wf, 
face-lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
bool_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
unionEquality, 
cumulativity, 
hypothesisEquality, 
because_Cache, 
hypothesis, 
lambdaEquality, 
lambdaFormation, 
applyEquality, 
setElimination, 
rename, 
functionExtensionality, 
setEquality, 
dependent_set_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
productEquality, 
independent_isectElimination, 
isect_memberEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].
\mforall{}[Q:\{x:fset(T  +  T)|  \muparrow{}fset-contains-none(union-deq(T;T;eq;eq);x;x.face-lattice-constraints(x))\} 
        {}\mrightarrow{}  \mBbbB{}].  \mforall{}[s:Point(face-lattice(T;eq))].
    (fl-filter(s;x.Q[x])  \mmember{}  Point(face-lattice(T;eq)))
Date html generated:
2018_05_22-PM-09_54_56
Last ObjectModification:
2018_05_20-PM-10_12_29
Theory : lattices
Home
Index