Nuprl Lemma : cal-filter_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[P:fset(T) ⟶ 𝔹]. ∀[s:Point(constrained-antichain-lattice(T;eq;P))]. ∀[Q:{x:fset(T)| 
                                                                                                          ↑P[x]}  ⟶ 𝔹].
  (cal-filter(s;x.Q[x]) ∈ Point(constrained-antichain-lattice(T;eq;P)))


Proof




Definitions occuring in Statement :  cal-filter: cal-filter(s;x.P[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) lattice-point: Point(l) fset: fset(T) deq: EqDecider(T) assert: b bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top subtype_rel: A ⊆B so_apply: x[s] and: P ∧ Q so_lambda: λ2x.t[x] prop: uimplies: supposing a all: x:A. B[x] implies:  Q uiff: uiff(P;Q) cal-filter: cal-filter(s;x.P[x]) guard: {T} iff: ⇐⇒ Q rev_implies:  Q istype: istype(T) not: ¬A false: False true: True btrue: tt ifthenelse: if then else fi  assert: b sq_type: SQType(T) cand: c∧ B
Lemmas referenced :  cal-point istype-void istype-assert bool_wf fset_wf fset-antichain_wf fset-all_wf deq_wf istype-universe set_wf subtype_rel_self assert_wf fset-subtype2 deq-fset_wf fset-member_wf fset-filter_wf subtype_rel_dep_function subtype_rel_sets fset-subtype fset-all-iff assert-fset-antichain iff_weakening_uiff equal_wf f-proper-subset_wf not_wf isect_wf all_wf member-fset-filter2 subtype_rel_sets_simple assert_witness bool_subtype_base subtype_base_sq assert_elim strong-subtype-set2 strong-subtype-deq-subtype
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality_alt voidElimination hypothesis because_Cache setElimination rename applyEquality axiomEquality equalityTransitivity equalitySymmetry functionIsType setIsType hypothesisEquality universeIsType isectIsTypeImplies inhabitedIsType productIsType lambdaEquality_alt instantiate universeEquality lambdaEquality functionExtensionality productElimination cumulativity setEquality independent_isectElimination lambdaFormation dependent_set_memberEquality_alt independent_functionElimination dependent_functionElimination lambdaFormation_alt equalityIsType1 hyp_replacement applyLambdaEquality functionIsTypeImplies productEquality isect_memberEquality natural_numberEquality isect_memberFormation independent_pairFormation dependent_set_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[P:fset(T)  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[s:Point(constrained-antichain-lattice(T;eq;P))].
\mforall{}[Q:\{x:fset(T)|  \muparrow{}P[x]\}    {}\mrightarrow{}  \mBbbB{}].
    (cal-filter(s;x.Q[x])  \mmember{}  Point(constrained-antichain-lattice(T;eq;P)))



Date html generated: 2019_10_31-AM-07_21_14
Last ObjectModification: 2018_11_10-PM-00_29_52

Theory : lattices


Home Index