Nuprl Lemma : member-fset-filter2
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[s:fset(T)]. ∀[P:{x:T| x ∈ s}  ⟶ 𝔹]. ∀[x:T].  uiff(x ∈ {x ∈ s | P[x]};{x ∈ s ∧ (↑P[x])}\000C)
Proof
Definitions occuring in Statement : 
fset-filter: {x ∈ s | P[x]}
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
assert: ↑b
, 
bool: 𝔹
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
fset: fset(T)
, 
quotient: x,y:A//B[x; y]
, 
fset-member: a ∈ s
, 
fset-filter: {x ∈ s | P[x]}
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
cand: A c∧ B
, 
false: False
, 
sq_type: SQType(T)
, 
true: True
, 
istype: istype(T)
, 
l_member: (x ∈ l)
, 
exists: ∃x:A. B[x]
, 
nat: ℕ
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
squash: ↓T
Lemmas referenced : 
fset-filter_wf, 
fset-member_wf, 
fset-subtype2, 
fset-subtype, 
decidable__and2, 
assert_wf, 
decidable__fset-member, 
decidable__assert, 
list_wf, 
set-equal_wf, 
set-equal-reflex, 
assert-deq-member, 
l_member_wf, 
istype-assert, 
deq-member_wf, 
filter_wf5, 
member_filter_2, 
equal_wf, 
subtype_base_sq, 
int_subtype_base, 
fset-member_witness, 
assert_witness, 
bool_wf, 
fset_wf, 
deq_wf, 
istype-universe, 
member_filter, 
list-subtype, 
subtype_rel_list, 
subtype_rel_sets, 
istype-less_than, 
select_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
length_wf, 
l_member-settype, 
equal_functionality_wrt_subtype_rel2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setEquality, 
hypothesisEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
Error :lambdaEquality_alt, 
Error :lambdaFormation_alt, 
Error :inhabitedIsType, 
setElimination, 
rename, 
applyEquality, 
Error :dependent_set_memberEquality_alt, 
Error :universeIsType, 
dependent_functionElimination, 
independent_isectElimination, 
independent_pairFormation, 
Error :isect_memberEquality_alt, 
independent_functionElimination, 
unionElimination, 
promote_hyp, 
pointwiseFunctionality, 
pertypeElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
Error :productIsType, 
Error :setIsType, 
voidElimination, 
Error :equalityIstype, 
sqequalBase, 
intEquality, 
natural_numberEquality, 
instantiate, 
cumulativity, 
independent_pairEquality, 
productEquality, 
Error :functionIsType, 
universeEquality, 
Error :dependent_pairFormation_alt, 
approximateComputation, 
int_eqEquality, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[s:fset(T)].  \mforall{}[P:\{x:T|  x  \mmember{}  s\}    {}\mrightarrow{}  \mBbbB{}].  \mforall{}[x:T].
    uiff(x  \mmember{}  \{x  \mmember{}  s  |  P[x]\};\{x  \mmember{}  s  \mwedge{}  (\muparrow{}P[x])\})
Date html generated:
2019_06_20-PM-01_58_47
Last ObjectModification:
2018_12_19-PM-05_08_21
Theory : finite!sets
Home
Index