Nuprl Lemma : member-fset-filter2

[T:Type]. ∀[eq:EqDecider(T)]. ∀[s:fset(T)]. ∀[P:{x:T| x ∈ s}  ⟶ 𝔹]. ∀[x:T].  uiff(x ∈ {x ∈ P[x]};{x ∈ s ∧ (↑P[x])}\000C)


Proof




Definitions occuring in Statement :  fset-filter: {x ∈ P[x]} fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) assert: b bool: 𝔹 uiff: uiff(P;Q) uall: [x:A]. B[x] guard: {T} so_apply: x[s] and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] all: x:A. B[x] so_apply: x[s] guard: {T} subtype_rel: A ⊆B uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q implies:  Q decidable: Dec(P) or: P ∨ Q fset: fset(T) quotient: x,y:A//B[x; y] fset-member: a ∈ s fset-filter: {x ∈ P[x]} not: ¬A rev_implies:  Q iff: ⇐⇒ Q cand: c∧ B false: False sq_type: SQType(T) true: True istype: istype(T) l_member: (x ∈ l) exists: x:A. B[x] nat: ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top squash: T
Lemmas referenced :  fset-filter_wf fset-member_wf fset-subtype2 fset-subtype decidable__and2 assert_wf decidable__fset-member decidable__assert list_wf set-equal_wf set-equal-reflex assert-deq-member l_member_wf istype-assert deq-member_wf filter_wf5 member_filter_2 equal_wf subtype_base_sq int_subtype_base fset-member_witness assert_witness bool_wf fset_wf deq_wf istype-universe member_filter list-subtype subtype_rel_list subtype_rel_sets istype-less_than select_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf length_wf l_member-settype equal_functionality_wrt_subtype_rel2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setEquality hypothesisEquality because_Cache hypothesis sqequalRule Error :lambdaEquality_alt,  Error :lambdaFormation_alt,  Error :inhabitedIsType,  setElimination rename applyEquality Error :dependent_set_memberEquality_alt,  Error :universeIsType,  dependent_functionElimination independent_isectElimination independent_pairFormation Error :isect_memberEquality_alt,  independent_functionElimination unionElimination promote_hyp pointwiseFunctionality pertypeElimination productElimination equalityTransitivity equalitySymmetry Error :productIsType,  Error :setIsType,  voidElimination Error :equalityIstype,  sqequalBase intEquality natural_numberEquality instantiate cumulativity independent_pairEquality productEquality Error :functionIsType,  universeEquality Error :dependent_pairFormation_alt,  approximateComputation int_eqEquality applyLambdaEquality imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[s:fset(T)].  \mforall{}[P:\{x:T|  x  \mmember{}  s\}    {}\mrightarrow{}  \mBbbB{}].  \mforall{}[x:T].
    uiff(x  \mmember{}  \{x  \mmember{}  s  |  P[x]\};\{x  \mmember{}  s  \mwedge{}  (\muparrow{}P[x])\})



Date html generated: 2019_06_20-PM-01_58_47
Last ObjectModification: 2018_12_19-PM-05_08_21

Theory : finite!sets


Home Index