Nuprl Lemma : fl-filter-subset
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[Q:fset(T + T) ⟶ 𝔹]. ∀[s:fset(fset(T + T))].  fl-filter(s;x.Q[x]) ⊆ s
Proof
Definitions occuring in Statement : 
fl-filter: fl-filter(s;x.Q[x])
, 
deq-fset: deq-fset(eq)
, 
f-subset: xs ⊆ ys
, 
fset: fset(T)
, 
union-deq: union-deq(A;B;a;b)
, 
deq: EqDecider(T)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
fl-filter: fl-filter(s;x.Q[x])
, 
cal-filter: cal-filter(s;x.P[x])
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
deq_wf, 
bool_wf, 
union-deq_wf, 
deq-fset_wf, 
fset_wf, 
fset-filter-subset
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
unionEquality, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[Q:fset(T  +  T)  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[s:fset(fset(T  +  T))].
    fl-filter(s;x.Q[x])  \msubseteq{}  s
Date html generated:
2016_05_18-AM-11_40_46
Last ObjectModification:
2016_01_19-AM-09_58_41
Theory : lattices
Home
Index