Nuprl Lemma : fl-filter-subset

[T:Type]. ∀[eq:EqDecider(T)]. ∀[Q:fset(T T) ⟶ 𝔹]. ∀[s:fset(fset(T T))].  fl-filter(s;x.Q[x]) ⊆ s


Proof




Definitions occuring in Statement :  fl-filter: fl-filter(s;x.Q[x]) deq-fset: deq-fset(eq) f-subset: xs ⊆ ys fset: fset(T) union-deq: union-deq(A;B;a;b) deq: EqDecider(T) bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] fl-filter: fl-filter(s;x.Q[x]) cal-filter: cal-filter(s;x.P[x]) member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  deq_wf bool_wf union-deq_wf deq-fset_wf fset_wf fset-filter-subset
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin unionEquality hypothesisEquality hypothesis sqequalRule lambdaEquality applyEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[Q:fset(T  +  T)  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[s:fset(fset(T  +  T))].
    fl-filter(s;x.Q[x])  \msubseteq{}  s



Date html generated: 2016_05_18-AM-11_40_46
Last ObjectModification: 2016_01_19-AM-09_58_41

Theory : lattices


Home Index