Nuprl Lemma : fset-filter-subset
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[P:T ⟶ 𝔹]. ∀[s:fset(T)].  {x ∈ s | P[x]} ⊆ s
Proof
Definitions occuring in Statement : 
fset-filter: {x ∈ s | P[x]}, 
f-subset: xs ⊆ ys, 
fset: fset(T), 
deq: EqDecider(T), 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
f-subset: xs ⊆ ys, 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uiff: uiff(P;Q), 
and: P ∧ Q, 
implies: P ⇒ Q, 
prop: ℙ, 
guard: {T}
Lemmas referenced : 
member-fset-filter, 
fset-member_witness, 
fset-member_wf, 
fset-filter_wf, 
istype-universe, 
fset_wf, 
bool_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
Error :lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
Error :lambdaEquality_alt, 
applyEquality, 
Error :inhabitedIsType, 
hypothesis, 
productElimination, 
independent_isectElimination, 
because_Cache, 
independent_functionElimination, 
Error :universeIsType, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
equalityTransitivity, 
equalitySymmetry, 
Error :functionIsTypeImplies, 
Error :functionIsType, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[s:fset(T)].    \{x  \mmember{}  s  |  P[x]\}  \msubseteq{}  s
Date html generated:
2019_06_20-PM-01_58_55
Last ObjectModification:
2018_10_06-PM-11_55_32
Theory : finite!sets
Home
Index