Nuprl Lemma : fset-filter-subset

[T:Type]. ∀[eq:EqDecider(T)]. ∀[P:T ⟶ 𝔹]. ∀[s:fset(T)].  {x ∈ P[x]} ⊆ s


Proof




Definitions occuring in Statement :  fset-filter: {x ∈ P[x]} f-subset: xs ⊆ ys fset: fset(T) deq: EqDecider(T) bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T f-subset: xs ⊆ ys all: x:A. B[x] uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) and: P ∧ Q implies:  Q prop: guard: {T}
Lemmas referenced :  member-fset-filter fset-member_witness fset-member_wf fset-filter_wf istype-universe fset_wf bool_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut Error :lambdaFormation_alt,  extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule Error :lambdaEquality_alt,  applyEquality Error :inhabitedIsType,  hypothesis productElimination independent_isectElimination because_Cache independent_functionElimination Error :universeIsType,  dependent_functionElimination Error :isect_memberEquality_alt,  equalityTransitivity equalitySymmetry Error :functionIsTypeImplies,  Error :functionIsType,  universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[s:fset(T)].    \{x  \mmember{}  s  |  P[x]\}  \msubseteq{}  s



Date html generated: 2019_06_20-PM-01_58_55
Last ObjectModification: 2018_10_06-PM-11_55_32

Theory : finite!sets


Home Index