Nuprl Lemma : basic-formal-sum-strong-subtype
∀[K:RngSig]. ∀[S,T:Type].  strong-subtype(basic-formal-sum(K;S);basic-formal-sum(K;T)) supposing strong-subtype(S;T)
Proof
Definitions occuring in Statement : 
basic-formal-sum: basic-formal-sum(K;S)
, 
strong-subtype: strong-subtype(A;B)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
rng_sig: RngSig
Definitions unfolded in proof : 
basic-formal-sum: basic-formal-sum(K;S)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
strong-subtype-bag, 
strong-subtype-product, 
strong-subtype-self, 
strong-subtype_witness, 
bag_wf, 
rng_car_wf, 
strong-subtype_wf, 
istype-universe, 
rng_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
independent_isectElimination, 
hypothesisEquality, 
hypothesis, 
productEquality, 
independent_functionElimination, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[K:RngSig].  \mforall{}[S,T:Type].
    strong-subtype(basic-formal-sum(K;S);basic-formal-sum(K;T))  supposing  strong-subtype(S;T)
Date html generated:
2019_10_31-AM-06_28_17
Last ObjectModification:
2019_08_15-PM-02_28_28
Theory : linear!algebra
Home
Index