Nuprl Lemma : basic-formal-sum-strong-subtype

[K:RngSig]. ∀[S,T:Type].  strong-subtype(basic-formal-sum(K;S);basic-formal-sum(K;T)) supposing strong-subtype(S;T)


Proof




Definitions occuring in Statement :  basic-formal-sum: basic-formal-sum(K;S) strong-subtype: strong-subtype(A;B) uimplies: supposing a uall: [x:A]. B[x] universe: Type rng_sig: RngSig
Definitions unfolded in proof :  basic-formal-sum: basic-formal-sum(K;S) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a implies:  Q prop:
Lemmas referenced :  strong-subtype-bag strong-subtype-product strong-subtype-self strong-subtype_witness bag_wf rng_car_wf strong-subtype_wf istype-universe rng_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache independent_isectElimination hypothesisEquality hypothesis productEquality independent_functionElimination universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType instantiate universeEquality

Latex:
\mforall{}[K:RngSig].  \mforall{}[S,T:Type].
    strong-subtype(basic-formal-sum(K;S);basic-formal-sum(K;T))  supposing  strong-subtype(S;T)



Date html generated: 2019_10_31-AM-06_28_17
Last ObjectModification: 2019_08_15-PM-02_28_28

Theory : linear!algebra


Home Index