Nuprl Lemma : strong-subtype-product
∀[A,B,C,D:Type].  (strong-subtype(A × B;C × D)) supposing (strong-subtype(B;D) and strong-subtype(A;C))
Proof
Definitions occuring in Statement : 
strong-subtype: strong-subtype(A;B)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
strong-subtype: strong-subtype(A;B)
, 
cand: A c∧ B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
pi1: fst(t)
, 
pi2: snd(t)
Lemmas referenced : 
strong-subtype-implies, 
subtype_rel_product, 
exists_wf, 
equal_wf, 
strong-subtype_witness, 
strong-subtype_wf, 
pi1_wf, 
pi2_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
productElimination, 
sqequalRule, 
lambdaEquality, 
independent_isectElimination, 
lambdaFormation, 
because_Cache, 
independent_pairFormation, 
setElimination, 
rename, 
independent_pairEquality, 
setEquality, 
productEquality, 
applyEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
dependent_set_memberEquality, 
dependent_pairFormation, 
equalityUniverse, 
levelHypothesis
Latex:
\mforall{}[A,B,C,D:Type].
    (strong-subtype(A  \mtimes{}  B;C  \mtimes{}  D))  supposing  (strong-subtype(B;D)  and  strong-subtype(A;C))
Date html generated:
2016_05_13-PM-04_11_20
Last ObjectModification:
2015_12_26-AM-11_21_28
Theory : subtype_1
Home
Index