Nuprl Lemma : strong-subtype-product

[A,B,C,D:Type].  (strong-subtype(A × B;C × D)) supposing (strong-subtype(B;D) and strong-subtype(A;C))


Proof




Definitions occuring in Statement :  strong-subtype: strong-subtype(A;B) uimplies: supposing a uall: [x:A]. B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a implies:  Q guard: {T} strong-subtype: strong-subtype(A;B) cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] subtype_rel: A ⊆B exists: x:A. B[x] prop: pi1: fst(t) pi2: snd(t)
Lemmas referenced :  strong-subtype-implies subtype_rel_product exists_wf equal_wf strong-subtype_witness strong-subtype_wf pi1_wf pi2_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination hypothesis productElimination sqequalRule lambdaEquality independent_isectElimination lambdaFormation because_Cache independent_pairFormation setElimination rename independent_pairEquality setEquality productEquality applyEquality isect_memberEquality equalityTransitivity equalitySymmetry universeEquality dependent_set_memberEquality dependent_pairFormation equalityUniverse levelHypothesis

Latex:
\mforall{}[A,B,C,D:Type].
    (strong-subtype(A  \mtimes{}  B;C  \mtimes{}  D))  supposing  (strong-subtype(B;D)  and  strong-subtype(A;C))



Date html generated: 2016_05_13-PM-04_11_20
Last ObjectModification: 2015_12_26-AM-11_21_28

Theory : subtype_1


Home Index