Nuprl Lemma : basic-formal-sum-subtype
∀[K:RngSig]. ∀[S,T:Type].  basic-formal-sum(K;S) ⊆r basic-formal-sum(K;T) supposing S ⊆r T
Proof
Definitions occuring in Statement : 
basic-formal-sum: basic-formal-sum(K;S)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
rng_sig: RngSig
Definitions unfolded in proof : 
basic-formal-sum: basic-formal-sum(K;S)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
Lemmas referenced : 
subtype_rel_bag, 
rng_car_wf, 
subtype_rel_product, 
subtype_rel_wf, 
istype-universe, 
rng_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
lambdaEquality_alt, 
universeIsType, 
because_Cache, 
lambdaFormation_alt, 
axiomEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[K:RngSig].  \mforall{}[S,T:Type].    basic-formal-sum(K;S)  \msubseteq{}r  basic-formal-sum(K;T)  supposing  S  \msubseteq{}r  T
Date html generated:
2019_10_31-AM-06_28_14
Last ObjectModification:
2019_08_15-PM-02_17_07
Theory : linear!algebra
Home
Index