Nuprl Lemma : bfs-equiv-implies2

[S:Type]. ∀[K:RngSig].
  ∀x,y:basic-formal-sum(K;S).
    (bfs-equiv(K;S;x;y)
     {∀[P:basic-formal-sum(K;S) ⟶ ℙ]
          ((∀x,y:basic-formal-sum(K;S).  (bfs-reduce(K;S;x;y)  (P[x] ⇐⇒ P[y])))  P[x]  P[y])})


Proof




Definitions occuring in Statement :  bfs-equiv: bfs-equiv(K;S;fs1;fs2) bfs-reduce: bfs-reduce(K;S;as;bs) basic-formal-sum: basic-formal-sum(K;S) uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] universe: Type rng_sig: RngSig
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T infix_ap: y bfs-equiv: bfs-equiv(K;S;fs1;fs2) guard: {T} prop:
Lemmas referenced :  least-equiv-induction2 bfs-reduce_wf bfs-equiv_wf basic-formal-sum_wf rng_sig_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache lambdaEquality_alt hypothesisEquality hypothesis inhabitedIsType sqequalRule dependent_functionElimination independent_functionElimination universeIsType instantiate universeEquality

Latex:
\mforall{}[S:Type].  \mforall{}[K:RngSig].
    \mforall{}x,y:basic-formal-sum(K;S).
        (bfs-equiv(K;S;x;y)
        {}\mRightarrow{}  \{\mforall{}[P:basic-formal-sum(K;S)  {}\mrightarrow{}  \mBbbP{}]
                    ((\mforall{}x,y:basic-formal-sum(K;S).    (bfs-reduce(K;S;x;y)  {}\mRightarrow{}  (P[x]  \mLeftarrow{}{}\mRightarrow{}  P[y])))
                    {}\mRightarrow{}  P[x]
                    {}\mRightarrow{}  P[y])\})



Date html generated: 2019_10_31-AM-06_28_34
Last ObjectModification: 2019_08_14-PM-05_53_45

Theory : linear!algebra


Home Index