Nuprl Lemma : bfs-equiv-implies2
∀[S:Type]. ∀[K:RngSig].
  ∀x,y:basic-formal-sum(K;S).
    (bfs-equiv(K;S;x;y)
    
⇒ {∀[P:basic-formal-sum(K;S) ⟶ ℙ]
          ((∀x,y:basic-formal-sum(K;S).  (bfs-reduce(K;S;x;y) 
⇒ (P[x] 
⇐⇒ P[y]))) 
⇒ P[x] 
⇒ P[y])})
Proof
Definitions occuring in Statement : 
bfs-equiv: bfs-equiv(K;S;fs1;fs2)
, 
bfs-reduce: bfs-reduce(K;S;as;bs)
, 
basic-formal-sum: basic-formal-sum(K;S)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
rng_sig: RngSig
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
infix_ap: x f y
, 
bfs-equiv: bfs-equiv(K;S;fs1;fs2)
, 
guard: {T}
, 
prop: ℙ
Lemmas referenced : 
least-equiv-induction2, 
bfs-reduce_wf, 
bfs-equiv_wf, 
basic-formal-sum_wf, 
rng_sig_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
lambdaEquality_alt, 
hypothesisEquality, 
hypothesis, 
inhabitedIsType, 
sqequalRule, 
dependent_functionElimination, 
independent_functionElimination, 
universeIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[S:Type].  \mforall{}[K:RngSig].
    \mforall{}x,y:basic-formal-sum(K;S).
        (bfs-equiv(K;S;x;y)
        {}\mRightarrow{}  \{\mforall{}[P:basic-formal-sum(K;S)  {}\mrightarrow{}  \mBbbP{}]
                    ((\mforall{}x,y:basic-formal-sum(K;S).    (bfs-reduce(K;S;x;y)  {}\mRightarrow{}  (P[x]  \mLeftarrow{}{}\mRightarrow{}  P[y])))
                    {}\mRightarrow{}  P[x]
                    {}\mRightarrow{}  P[y])\})
Date html generated:
2019_10_31-AM-06_28_34
Last ObjectModification:
2019_08_14-PM-05_53_45
Theory : linear!algebra
Home
Index