Nuprl Lemma : least-equiv-induction2

[A:Type]. ∀[R:A ⟶ A ⟶ ℙ].
  ∀x,y:A.  ((x least-equiv(A;R) y)  {∀[P:A ⟶ ℙ]. ((∀x,y:A.  ((x y)  (P[x] ⇐⇒ P[y])))  P[x]  P[y])})


Proof




Definitions occuring in Statement :  least-equiv: least-equiv(A;R) uall: [x:A]. B[x] prop: guard: {T} infix_ap: y so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q guard: {T} member: t ∈ T prop: so_apply: x[s] so_lambda: λ2x.t[x] infix_ap: y
Lemmas referenced :  least-equiv-induction all_wf iff_wf least-equiv_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality independent_functionElimination hypothesis applyEquality sqequalRule lambdaEquality functionEquality cumulativity universeEquality dependent_functionElimination

Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}x,y:A.
        ((x  least-equiv(A;R)  y)
        {}\mRightarrow{}  \{\mforall{}[P:A  {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}x,y:A.    ((x  R  y)  {}\mRightarrow{}  (P[x]  \mLeftarrow{}{}\mRightarrow{}  P[y])))  {}\mRightarrow{}  P[x]  {}\mRightarrow{}  P[y])\})



Date html generated: 2018_05_21-PM-00_52_07
Last ObjectModification: 2018_05_04-AM-10_25_19

Theory : relations2


Home Index