Nuprl Lemma : least-equiv-induction

[A:Type]. ∀[P:A ⟶ ℙ]. ∀[R:A ⟶ A ⟶ ℙ].
  ((∀x,y:A.  ((x y)  (P[x] ⇐⇒ P[y])))  (∀x,y:A.  ((x least-equiv(A;R) y)  P[x]  P[y])))


Proof




Definitions occuring in Statement :  least-equiv: least-equiv(A;R) uall: [x:A]. B[x] prop: infix_ap: y so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] infix_ap: y least-equiv: least-equiv(A;R) transitive-reflexive-closure: R^* or: P ∨ Q prop: and: P ∧ Q member: t ∈ T so_apply: x[s] so_lambda: λ2x.t[x] iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  and_wf equal_wf transitive-closure-induction or_wf infix_ap_wf least-equiv_wf all_wf iff_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution sqequalRule unionElimination thin cut hypothesis addLevel hyp_replacement equalitySymmetry dependent_set_memberEquality independent_pairFormation hypothesisEquality introduction extract_by_obid isectElimination applyLambdaEquality setElimination rename productElimination applyEquality levelHypothesis lambdaEquality independent_functionElimination instantiate cumulativity universeEquality because_Cache dependent_functionElimination functionEquality

Latex:
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}x,y:A.    ((x  R  y)  {}\mRightarrow{}  (P[x]  \mLeftarrow{}{}\mRightarrow{}  P[y])))  {}\mRightarrow{}  (\mforall{}x,y:A.    ((x  least-equiv(A;R)  y)  {}\mRightarrow{}  P[x]  {}\mRightarrow{}  P[y])))



Date html generated: 2018_05_21-PM-00_52_06
Last ObjectModification: 2018_05_04-AM-10_21_29

Theory : relations2


Home Index