Nuprl Lemma : vs-bag-add-map

[vs:Top]. ∀[S:Type]. ∀[f,g:Top]. ∀[bs:bag(S)].  {f[b] b ∈ bag-map(g;bs)} ~ Σ{f[g b] b ∈ bs})


Proof




Definitions occuring in Statement :  vs-bag-add: Σ{f[b] b ∈ bs} uall: [x:A]. B[x] top: Top so_apply: x[s] apply: a universe: Type sqequal: t bag-map: bag-map(f;bs) bag: bag(T)
Definitions unfolded in proof :  uall: [x:A]. B[x] vs-bag-add: Σ{f[b] b ∈ bs} member: t ∈ T top: Top subtype_rel: A ⊆B all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  bag-summation-map istype-void bag-subtype-list bag_wf istype-universe istype-top
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality_alt voidElimination hypothesis hypothesisEquality applyEquality dependent_functionElimination universeIsType because_Cache inhabitedIsType instantiate universeEquality

Latex:
\mforall{}[vs:Top].  \mforall{}[S:Type].  \mforall{}[f,g:Top].  \mforall{}[bs:bag(S)].    (\mSigma{}\{f[b]  |  b  \mmember{}  bag-map(g;bs)\}  \msim{}  \mSigma{}\{f[g  b]  |  b  \mmember{}  bs\})



Date html generated: 2019_10_31-AM-06_25_52
Last ObjectModification: 2019_08_08-AM-11_50_37

Theory : linear!algebra


Home Index