Nuprl Lemma : vs-bag-add-map
∀[vs:Top]. ∀[S:Type]. ∀[f,g:Top]. ∀[bs:bag(S)].  (Σ{f[b] | b ∈ bag-map(g;bs)} ~ Σ{f[g b] | b ∈ bs})
Proof
Definitions occuring in Statement : 
vs-bag-add: Σ{f[b] | b ∈ bs}
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
apply: f a
, 
universe: Type
, 
sqequal: s ~ t
, 
bag-map: bag-map(f;bs)
, 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
vs-bag-add: Σ{f[b] | b ∈ bs}
, 
member: t ∈ T
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
bag-summation-map, 
istype-void, 
bag-subtype-list, 
bag_wf, 
istype-universe, 
istype-top
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality_alt, 
voidElimination, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
dependent_functionElimination, 
universeIsType, 
because_Cache, 
inhabitedIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[vs:Top].  \mforall{}[S:Type].  \mforall{}[f,g:Top].  \mforall{}[bs:bag(S)].    (\mSigma{}\{f[b]  |  b  \mmember{}  bag-map(g;bs)\}  \msim{}  \mSigma{}\{f[g  b]  |  b  \mmember{}  bs\})
Date html generated:
2019_10_31-AM-06_25_52
Last ObjectModification:
2019_08_08-AM-11_50_37
Theory : linear!algebra
Home
Index