Nuprl Lemma : vs-exp_wf
∀[K:Rng]. ∀[S:Type]. ∀[V:VectorSpace(K)].  (V^S ∈ VectorSpace(K))
Proof
Definitions occuring in Statement : 
vs-exp: V^S
, 
vector-space: VectorSpace(K)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
, 
rng: Rng
Definitions unfolded in proof : 
rng: Rng
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
vs-exp: V^S
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rng_wf, 
vector-space_wf, 
vs-sum_wf
Rules used in proof : 
universeEquality, 
because_Cache, 
isect_memberEquality, 
rename, 
setElimination, 
dependent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
hypothesis, 
lambdaEquality, 
cumulativity, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[K:Rng].  \mforall{}[S:Type].  \mforall{}[V:VectorSpace(K)].    (V\^{}S  \mmember{}  VectorSpace(K))
Date html generated:
2018_05_22-PM-09_42_36
Last ObjectModification:
2018_01_09-PM-01_03_12
Theory : linear!algebra
Home
Index