Nuprl Lemma : vs-exp_wf

[K:Rng]. ∀[S:Type]. ∀[V:VectorSpace(K)].  (V^S ∈ VectorSpace(K))


Proof




Definitions occuring in Statement :  vs-exp: V^S vector-space: VectorSpace(K) uall: [x:A]. B[x] member: t ∈ T universe: Type rng: Rng
Definitions unfolded in proof :  rng: Rng all: x:A. B[x] so_apply: x[s] so_lambda: λ2x.t[x] vs-exp: V^S member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rng_wf vector-space_wf vs-sum_wf
Rules used in proof :  universeEquality because_Cache isect_memberEquality rename setElimination dependent_functionElimination equalitySymmetry equalityTransitivity axiomEquality hypothesis lambdaEquality cumulativity hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[K:Rng].  \mforall{}[S:Type].  \mforall{}[V:VectorSpace(K)].    (V\^{}S  \mmember{}  VectorSpace(K))



Date html generated: 2018_05_22-PM-09_42_36
Last ObjectModification: 2018_01_09-PM-01_03_12

Theory : linear!algebra


Home Index