Nuprl Lemma : vs-sum_wf

[K:Rng]. ∀[S:Type]. ∀[V:S ⟶ VectorSpace(K)].  s:S. V[s] ∈ VectorSpace(K))


Proof




Definitions occuring in Statement :  vs-sum: Σs:S. V[s] vector-space: VectorSpace(K) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type rng: Rng
Definitions unfolded in proof :  implies:  Q rev_implies:  Q iff: ⇐⇒ Q guard: {T} subtype_rel: A ⊆B true: True prop: squash: T all: x:A. B[x] cand: c∧ B and: P ∧ Q uimplies: supposing a so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] so_apply: x[s] rng: Rng vs-sum: Σs:S. V[s] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rng_wf vector-space_wf vs-mul-add rng_times_wf infix_ap_wf vs-mul-mul vs-mul-zero vs-mul-one vs-mul-linear vs-add-comm iff_weakening_equal vs-mon_assoc true_wf squash_wf equal_wf rng_car_wf vs-mul_wf vs-add_wf vs-0_wf vs-point_wf mk-vs_wf
Rules used in proof :  isect_memberEquality dependent_functionElimination axiomEquality independent_pairFormation independent_functionElimination productElimination baseClosed imageMemberEquality natural_numberEquality universeEquality equalitySymmetry equalityTransitivity imageElimination lambdaFormation independent_isectElimination lambdaEquality functionExtensionality applyEquality hypothesisEquality cumulativity functionEquality hypothesis because_Cache rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[K:Rng].  \mforall{}[S:Type].  \mforall{}[V:S  {}\mrightarrow{}  VectorSpace(K)].    (\mSigma{}s:S.  V[s]  \mmember{}  VectorSpace(K))



Date html generated: 2018_05_22-PM-09_42_33
Last ObjectModification: 2018_01_09-PM-01_03_17

Theory : linear!algebra


Home Index