Nuprl Lemma : pscm-type-at

s,A,I,alpha:Top.  ((A)s(alpha) A((s)alpha))


Proof




Definitions occuring in Statement :  pscm-ap-type: (AF)s presheaf-type-at: A(a) pscm-ap: (s)x top: Top all: x:A. B[x] sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] presheaf-type-at: A(a) pi1: fst(t) uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) member: t ∈ T so_apply: x[s1;s2;s3;s4] top: Top uimplies: supposing a strict4: strict4(F) and: P ∧ Q implies:  Q has-value: (a)↓ prop: guard: {T} or: P ∨ Q squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] pscm-ap-type: (AF)s pscm-ap: (s)x
Lemmas referenced :  lifting-strict-spread has-value_wf_base base_wf is-exception_wf strict4-spread top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination thin baseClosed isect_memberEquality voidElimination voidEquality independent_isectElimination independent_pairFormation callbyvalueApply hypothesis baseApply closedConclusion hypothesisEquality applyExceptionCases inrFormation imageMemberEquality imageElimination inlFormation instantiate because_Cache

Latex:
\mforall{}s,A,I,alpha:Top.    ((A)s(alpha)  \msim{}  A((s)alpha))



Date html generated: 2018_05_23-AM-08_12_42
Last ObjectModification: 2018_05_20-PM-09_51_34

Theory : presheaf!models!of!type!theory


Home Index