Step
*
1
1
1
1
of Lemma
Riemann-sums-cauchy
1. a : ℝ@i
2. b : {b:ℝ| a ≤ b} @i
3. f : [a, b] ⟶ℝ@i
4. mc : f[x] continuous for x ∈ [a, b]@i
5. n : ℕ+@i
6. r0 ≤ (b - a)
7. r0 ≤ (r(2 * n) * (b - a))
8. m : ℕ+
9. |r(2 * n) * (b - a)| ≤ r(m)
10. (mc 1 m) = (mc 1 m) ∈ ℝ
11. (r0 < (mc 1 m)) ∧ (∀x,y:ℝ.  ((x ∈ [a, b]) 
⇒ (y ∈ [a, b]) 
⇒ (|x - y| ≤ (mc 1 m)) 
⇒ (|f[x] - f[y]| ≤ (r1/r(m)))))
12. r0 < (b - a)
⊢ ∃N:{ℕ| (∀k,m:ℕ.  ((N ≤ k) 
⇒ (N ≤ m) 
⇒ (|Riemann-sum(f;a;b;k + 1) - Riemann-sum(f;a;b;m + 1)| ≤ (r1/r(n)))))}
BY
{ (DupHyp (-1)
   THEN nRAdd ⌜a⌝ (-1)⋅
   THEN (InstLemma `integer-bound` [⌜(b - a/mc 1 m)⌝]⋅ THENA Auto)
   THEN D -1
   THEN RenameVar `N' (-2)
   THEN (RWO "rabs-of-nonneg" (-1) THENA (Auto THEN nRMul ⌜mc 1 m⌝ 0⋅ THEN Auto THEN nRAdd ⌜a⌝ 0⋅ THEN Auto))
   THEN With ⌜N - 1⌝ (D 0)⋅
   THEN Auto) }
1
1. a : ℝ@i
2. b : {b:ℝ| a ≤ b} @i
3. f : [a, b] ⟶ℝ@i
4. mc : f[x] continuous for x ∈ [a, b]@i
5. n : ℕ+@i
6. r0 ≤ (b - a)
7. r0 ≤ (r(2 * n) * (b - a))
8. m : ℕ+
9. |r(2 * n) * (b - a)| ≤ r(m)
10. (mc 1 m) = (mc 1 m) ∈ ℝ
11. r0 < (mc 1 m)
12. ∀x,y:ℝ.  ((x ∈ [a, b]) 
⇒ (y ∈ [a, b]) 
⇒ (|x - y| ≤ (mc 1 m)) 
⇒ (|f[x] - f[y]| ≤ (r1/r(m))))
13. r0 < (b - a)
14. a < b
15. N : ℕ+
16. (b - a/mc 1 m) ≤ r(N)
17. k : ℕ@i
18. m1 : ℕ@i
19. (N - 1) ≤ k@i
20. (N - 1) ≤ m1@i
⊢ |Riemann-sum(f;a;b;k + 1) - Riemann-sum(f;a;b;m1 + 1)| ≤ (r1/r(n))
Latex:
Latex:
1.  a  :  \mBbbR{}@i
2.  b  :  \{b:\mBbbR{}|  a  \mleq{}  b\}  @i
3.  f  :  [a,  b]  {}\mrightarrow{}\mBbbR{}@i
4.  mc  :  f[x]  continuous  for  x  \mmember{}  [a,  b]@i
5.  n  :  \mBbbN{}\msupplus{}@i
6.  r0  \mleq{}  (b  -  a)
7.  r0  \mleq{}  (r(2  *  n)  *  (b  -  a))
8.  m  :  \mBbbN{}\msupplus{}
9.  |r(2  *  n)  *  (b  -  a)|  \mleq{}  r(m)
10.  (mc  1  m)  =  (mc  1  m)
11.  (r0  <  (mc  1  m))
\mwedge{}  (\mforall{}x,y:\mBbbR{}.    ((x  \mmember{}  [a,  b])  {}\mRightarrow{}  (y  \mmember{}  [a,  b])  {}\mRightarrow{}  (|x  -  y|  \mleq{}  (mc  1  m))  {}\mRightarrow{}  (|f[x]  -  f[y]|  \mleq{}  (r1/r(m)))))
12.  r0  <  (b  -  a)
\mvdash{}  \mexists{}N:\{\mBbbN{}|  (\mforall{}k,m:\mBbbN{}.
                        ((N  \mleq{}  k)
                        {}\mRightarrow{}  (N  \mleq{}  m)
                        {}\mRightarrow{}  (|Riemann-sum(f;a;b;k  +  1)  -  Riemann-sum(f;a;b;m  +  1)|  \mleq{}  (r1/r(n)))))\}
By
Latex:
(DupHyp  (-1)
  THEN  nRAdd  \mkleeneopen{}a\mkleeneclose{}  (-1)\mcdot{}
  THEN  (InstLemma  `integer-bound`  [\mkleeneopen{}(b  -  a/mc  1  m)\mkleeneclose{}]\mcdot{}  THENA  Auto)
  THEN  D  -1
  THEN  RenameVar  `N'  (-2)
  THEN  (RWO  "rabs-of-nonneg"  (-1)
              THENA  (Auto  THEN  nRMul  \mkleeneopen{}mc  1  m\mkleeneclose{}  0\mcdot{}  THEN  Auto  THEN  nRAdd  \mkleeneopen{}a\mkleeneclose{}  0\mcdot{}  THEN  Auto)
              )
  THEN  With  \mkleeneopen{}N  -  1\mkleeneclose{}  (D  0)\mcdot{}
  THEN  Auto)
Home
Index