Nuprl Lemma : accelerate1-real-strong-regular
∀x:ℝ. strong-regular-int-seq(2;3;accelerate(1;x))
Proof
Definitions occuring in Statement :
accelerate: accelerate(k;f)
,
real: ℝ
,
strong-regular-int-seq: strong-regular-int-seq(a;b;f)
,
all: ∀x:A. B[x]
,
natural_number: $n
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
nat_plus: ℕ+
,
less_than: a < b
,
squash: ↓T
,
less_than': less_than'(a;b)
,
true: True
,
and: P ∧ Q
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
Lemmas referenced :
accelerate-real-strong-regular,
less_than_wf,
real_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
dependent_set_memberEquality,
natural_numberEquality,
sqequalRule,
independent_pairFormation,
imageMemberEquality,
hypothesisEquality,
baseClosed,
hypothesis,
isectElimination
Latex:
\mforall{}x:\mBbbR{}. strong-regular-int-seq(2;3;accelerate(1;x))
Date html generated:
2017_10_02-PM-07_13_42
Last ObjectModification:
2017_09_20-PM-05_10_20
Theory : reals
Home
Index