Nuprl Lemma : accelerate1-real-strong-regular
∀x:ℝ. strong-regular-int-seq(2;3;accelerate(1;x))
Proof
Definitions occuring in Statement : 
accelerate: accelerate(k;f), 
real: ℝ, 
strong-regular-int-seq: strong-regular-int-seq(a;b;f), 
all: ∀x:A. B[x], 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
nat_plus: ℕ+, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
and: P ∧ Q, 
uall: ∀[x:A]. B[x], 
prop: ℙ
Lemmas referenced : 
accelerate-real-strong-regular, 
less_than_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
hypothesis, 
isectElimination
Latex:
\mforall{}x:\mBbbR{}.  strong-regular-int-seq(2;3;accelerate(1;x))
 Date html generated: 
2017_10_02-PM-07_13_42
 Last ObjectModification: 
2017_09_20-PM-05_10_20
Theory : reals
Home
Index