Nuprl Lemma : alternating-series-converges-ext

x:ℕ ⟶ ℝ((∃M:ℕ. ∀n:ℕ(M <  ((r0 ≤ x[n]) ∧ (x[n 1] ≤ x[n]))))  lim n→∞.x[n] r0  Σn.-1^n x[n]↓)


Proof




Definitions occuring in Statement :  series-converges: Σn.x[n]↓ converges-to: lim n→∞.x[n] y rleq: x ≤ y int-rmul: k1 a int-to-real: r(n) real: fastexp: i^n nat: less_than: a < b so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] add: m minus: -n natural_number: $n
Definitions unfolded in proof :  member: t ∈ T so_apply: x[s] int-rmul: k1 a so_lambda: λ2x.t[x] accelerate: accelerate(k;f) alternating-series-converges converges-iff-cauchy-ext
Lemmas referenced :  alternating-series-converges converges-iff-cauchy-ext
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry

Latex:
\mforall{}x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}
    ((\mexists{}M:\mBbbN{}.  \mforall{}n:\mBbbN{}.  (M  <  n  {}\mRightarrow{}  ((r0  \mleq{}  x[n])  \mwedge{}  (x[n  +  1]  \mleq{}  x[n]))))
    {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.x[n]  =  r0
    {}\mRightarrow{}  \mSigma{}n.-1\^{}n  *  x[n]\mdownarrow{})



Date html generated: 2019_10_29-AM-10_29_52
Last ObjectModification: 2019_04_02-AM-10_56_57

Theory : reals


Home Index