Nuprl Lemma : alternating-series-converges

x:ℕ ⟶ ℝ((∃M:ℕ. ∀n:ℕ(M <  ((r0 ≤ x[n]) ∧ (x[n 1] ≤ x[n]))))  lim n→∞.x[n] r0  Σn.-1^n x[n]↓)


Proof




Definitions occuring in Statement :  series-converges: Σn.x[n]↓ converges-to: lim n→∞.x[n] y rleq: x ≤ y int-rmul: k1 a int-to-real: r(n) real: fastexp: i^n nat: less_than: a < b so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] add: m minus: -n natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T nat: uall: [x:A]. B[x] ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top and: P ∧ Q prop: cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s] series-converges: Σn.x[n]↓ series-sum: Σn.x[n] a converges: x[n]↓ as n→∞ int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T iff: ⇐⇒ Q rev_implies:  Q cauchy: cauchy(n.x[n]) converges-to: lim n→∞.x[n] y sq_exists: x:A [B[x]] guard: {T} nat_plus: + rneq: x ≠ y uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) int_upper: {i...} rge: x ≥ y req_int_terms: t1 ≡ t2
Lemmas referenced :  alternating-series-tail-bound nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf istype-le decidable__lt intformless_wf int_formula_prop_less_lemma converges-to_wf istype-nat int-to-real_wf istype-less_than rleq_wf real_wf converges-iff-cauchy-ext rsum_wf int-rmul_wf fastexp_wf int_seg_properties int_seg_wf imax_wf imax_nat nat_plus_properties intformeq_wf int_formula_prop_eq_lemma rabs_wf rsub_wf rdiv_wf rless-int rless_wf nat_plus_wf rleq_functionality rabs_functionality rsum-difference req_weakening rabs-difference-symmetry imax_ub itermSubtract_wf rleq_functionality_wrt_implies rleq_weakening_equal req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_var_lemma real_term_value_const_lemma rabs-of-nonneg
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution productElimination thin cut introduction extract_by_obid dependent_functionElimination hypothesisEquality dependent_set_memberEquality_alt addEquality setElimination rename hypothesis natural_numberEquality isectElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType because_Cache applyEquality productIsType functionIsType minusEquality imageElimination inhabitedIsType equalityTransitivity equalitySymmetry applyLambdaEquality equalityIstype closedConclusion inrFormation_alt inlFormation_alt

Latex:
\mforall{}x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}
    ((\mexists{}M:\mBbbN{}.  \mforall{}n:\mBbbN{}.  (M  <  n  {}\mRightarrow{}  ((r0  \mleq{}  x[n])  \mwedge{}  (x[n  +  1]  \mleq{}  x[n]))))
    {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.x[n]  =  r0
    {}\mRightarrow{}  \mSigma{}n.-1\^{}n  *  x[n]\mdownarrow{})



Date html generated: 2019_10_29-AM-10_29_37
Last ObjectModification: 2019_01_30-PM-05_28_43

Theory : reals


Home Index