Nuprl Lemma : alternating-series-converges
∀x:ℕ ⟶ ℝ. ((∃M:ℕ. ∀n:ℕ. (M < n 
⇒ ((r0 ≤ x[n]) ∧ (x[n + 1] ≤ x[n])))) 
⇒ lim n→∞.x[n] = r0 
⇒ Σn.-1^n * x[n]↓)
Proof
Definitions occuring in Statement : 
series-converges: Σn.x[n]↓
, 
converges-to: lim n→∞.x[n] = y
, 
rleq: x ≤ y
, 
int-rmul: k1 * a
, 
int-to-real: r(n)
, 
real: ℝ
, 
fastexp: i^n
, 
nat: ℕ
, 
less_than: a < b
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
minus: -n
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
cand: A c∧ B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
series-converges: Σn.x[n]↓
, 
series-sum: Σn.x[n] = a
, 
converges: x[n]↓ as n→∞
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than: a < b
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
cauchy: cauchy(n.x[n])
, 
converges-to: lim n→∞.x[n] = y
, 
sq_exists: ∃x:A [B[x]]
, 
guard: {T}
, 
nat_plus: ℕ+
, 
rneq: x ≠ y
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
int_upper: {i...}
, 
rge: x ≥ y
, 
req_int_terms: t1 ≡ t2
Lemmas referenced : 
alternating-series-tail-bound, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
converges-to_wf, 
istype-nat, 
int-to-real_wf, 
istype-less_than, 
rleq_wf, 
real_wf, 
converges-iff-cauchy-ext, 
rsum_wf, 
int-rmul_wf, 
fastexp_wf, 
int_seg_properties, 
int_seg_wf, 
imax_wf, 
imax_nat, 
nat_plus_properties, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
rabs_wf, 
rsub_wf, 
rdiv_wf, 
rless-int, 
rless_wf, 
nat_plus_wf, 
rleq_functionality, 
rabs_functionality, 
rsum-difference, 
req_weakening, 
rabs-difference-symmetry, 
imax_ub, 
itermSubtract_wf, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
rabs-of-nonneg
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
dependent_set_memberEquality_alt, 
addEquality, 
setElimination, 
rename, 
hypothesis, 
natural_numberEquality, 
isectElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
because_Cache, 
applyEquality, 
productIsType, 
functionIsType, 
minusEquality, 
imageElimination, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
equalityIstype, 
closedConclusion, 
inrFormation_alt, 
inlFormation_alt
Latex:
\mforall{}x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}
    ((\mexists{}M:\mBbbN{}.  \mforall{}n:\mBbbN{}.  (M  <  n  {}\mRightarrow{}  ((r0  \mleq{}  x[n])  \mwedge{}  (x[n  +  1]  \mleq{}  x[n]))))
    {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.x[n]  =  r0
    {}\mRightarrow{}  \mSigma{}n.-1\^{}n  *  x[n]\mdownarrow{})
Date html generated:
2019_10_29-AM-10_29_37
Last ObjectModification:
2019_01_30-PM-05_28_43
Theory : reals
Home
Index