Nuprl Lemma : int-rmul_wf
∀[k:ℤ]. ∀[a:ℝ].  (k * a ∈ ℝ)
Proof
Definitions occuring in Statement : 
int-rmul: k1 * a, 
real: ℝ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
real: ℝ, 
int-rmul: k1 * a, 
has-value: (a)↓, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
less_than: a < b, 
less_than': less_than'(a;b), 
top: Top, 
true: True, 
squash: ↓T, 
not: ¬A, 
false: False, 
nat_plus: ℕ+, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
prop: ℙ, 
bfalse: ff, 
subtype_rel: A ⊆r B, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
regular-int-seq: k-regular-seq(f), 
nat: ℕ, 
le: A ≤ B, 
int_lower: {...i}, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
absval: |i|, 
subtract: n - m
Lemmas referenced : 
value-type-has-value, 
int-value-type, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
istype-top, 
istype-void, 
mul_nat_plus, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermMinus_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_minus_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-less_than, 
nat_plus_wf, 
eqff_to_assert, 
int_subtype_base, 
bool_subtype_base, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
regular-int-seq_wf, 
real_wf, 
mul_cancel_in_le, 
absval_wf, 
subtract_wf, 
absval_nat_plus, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
le_wf, 
squash_wf, 
true_wf, 
absval_mul, 
subtype_rel_self, 
iff_weakening_equal, 
decidable__equal_int, 
multiply-is-int-iff, 
add-is-int-iff, 
itermMultiply_wf, 
itermSubtract_wf, 
int_term_value_mul_lemma, 
int_term_value_subtract_lemma, 
istype-nat, 
mul-swap, 
mul-distributes, 
equal_wf, 
istype-universe, 
add_functionality_wrt_eq, 
absval_neg, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
istype-le, 
mul-commutes, 
set_subtype_base, 
left_mul_subtract_distrib, 
mul_assoc, 
absval_pos, 
itermAdd_wf, 
int_term_value_add_lemma, 
minus-one-mul, 
mul-associates, 
zero-mul, 
zero-add, 
add-commutes
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
sqequalRule, 
callbyvalueReduce, 
extract_by_obid, 
isectElimination, 
intEquality, 
independent_isectElimination, 
hypothesis, 
hypothesisEquality, 
dependent_set_memberEquality_alt, 
closedConclusion, 
natural_numberEquality, 
because_Cache, 
inhabitedIsType, 
lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
productElimination, 
lessCases, 
axiomSqEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
independent_pairFormation, 
voidElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_functionElimination, 
lambdaEquality_alt, 
minusEquality, 
applyEquality, 
dependent_functionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
universeIsType, 
equalityTransitivity, 
equalitySymmetry, 
equalityIsType4, 
baseApply, 
promote_hyp, 
instantiate, 
cumulativity, 
equalityIsType1, 
axiomEquality, 
multiplyEquality, 
addEquality, 
universeEquality, 
hyp_replacement
Latex:
\mforall{}[k:\mBbbZ{}].  \mforall{}[a:\mBbbR{}].    (k  *  a  \mmember{}  \mBbbR{})
Date html generated:
2019_10_29-AM-09_32_16
Last ObjectModification:
2018_11_10-PM-01_33_05
Theory : reals
Home
Index