Nuprl Lemma : int-rmul_wf

[k:ℤ]. ∀[a:ℝ].  (k a ∈ ℝ)


Proof




Definitions occuring in Statement :  int-rmul: k1 a real: uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T real: int-rmul: k1 a has-value: (a)↓ uimplies: supposing a all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False nat_plus: + decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] prop: bfalse: ff subtype_rel: A ⊆B sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b rev_implies:  Q iff: ⇐⇒ Q regular-int-seq: k-regular-seq(f) nat: le: A ≤ B int_lower: {...i} so_lambda: λ2x.t[x] so_apply: x[s] absval: |i| subtract: m
Lemmas referenced :  value-type-has-value int-value-type lt_int_wf eqtt_to_assert assert_of_lt_int istype-top istype-void mul_nat_plus nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermMinus_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_minus_lemma int_term_value_var_lemma int_formula_prop_wf istype-less_than nat_plus_wf eqff_to_assert int_subtype_base bool_subtype_base bool_cases_sqequal subtype_base_sq bool_wf assert-bnot iff_weakening_uiff assert_wf less_than_wf regular-int-seq_wf real_wf mul_cancel_in_le absval_wf subtract_wf absval_nat_plus intformeq_wf int_formula_prop_eq_lemma le_wf squash_wf true_wf absval_mul subtype_rel_self iff_weakening_equal decidable__equal_int multiply-is-int-iff add-is-int-iff itermMultiply_wf itermSubtract_wf int_term_value_mul_lemma int_term_value_subtract_lemma istype-nat mul-swap mul-distributes equal_wf istype-universe add_functionality_wrt_eq absval_neg decidable__le intformle_wf int_formula_prop_le_lemma istype-le mul-commutes set_subtype_base left_mul_subtract_distrib mul_assoc absval_pos itermAdd_wf int_term_value_add_lemma minus-one-mul mul-associates zero-mul zero-add add-commutes
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution setElimination thin rename sqequalRule callbyvalueReduce extract_by_obid isectElimination intEquality independent_isectElimination hypothesis hypothesisEquality dependent_set_memberEquality_alt closedConclusion natural_numberEquality because_Cache inhabitedIsType lambdaFormation_alt unionElimination equalityElimination productElimination lessCases axiomSqEquality isect_memberEquality_alt isectIsTypeImplies independent_pairFormation voidElimination imageMemberEquality baseClosed imageElimination independent_functionElimination lambdaEquality_alt minusEquality applyEquality dependent_functionElimination approximateComputation dependent_pairFormation_alt int_eqEquality universeIsType equalityTransitivity equalitySymmetry equalityIsType4 baseApply promote_hyp instantiate cumulativity equalityIsType1 axiomEquality multiplyEquality addEquality universeEquality hyp_replacement

Latex:
\mforall{}[k:\mBbbZ{}].  \mforall{}[a:\mBbbR{}].    (k  *  a  \mmember{}  \mBbbR{})



Date html generated: 2019_10_29-AM-09_32_16
Last ObjectModification: 2018_11_10-PM-01_33_05

Theory : reals


Home Index