Nuprl Lemma : converges-absolutely_wf

[x:ℕ ⟶ ℝ]. (converges-absolutely(n.x[n]) ∈ ℙ)


Proof




Definitions occuring in Statement :  converges-absolutely: converges-absolutely(n.x[n]) real: nat: uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  converges-absolutely: converges-absolutely(n.x[n]) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  series-converges_wf rabs_wf nat_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality applyEquality hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry functionEquality

Latex:
\mforall{}[x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}].  (converges-absolutely(n.x[n])  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-07_59_27
Last ObjectModification: 2015_12_28-AM-01_10_06

Theory : reals


Home Index