Nuprl Lemma : converges-absolutely_wf
∀[x:ℕ ⟶ ℝ]. (converges-absolutely(n.x[n]) ∈ ℙ)
Proof
Definitions occuring in Statement : 
converges-absolutely: converges-absolutely(n.x[n]), 
real: ℝ, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
member: t ∈ T, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
converges-absolutely: converges-absolutely(n.x[n]), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
series-converges_wf, 
rabs_wf, 
nat_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality
Latex:
\mforall{}[x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}].  (converges-absolutely(n.x[n])  \mmember{}  \mBbbP{})
 Date html generated: 
2016_05_18-AM-07_59_27
 Last ObjectModification: 
2015_12_28-AM-01_10_06
Theory : reals
Home
Index