Nuprl Lemma : fun-discrete
∀A,B:Type.  (discrete-type(B) ⇒ discrete-type(A ⟶ B))
Proof
Definitions occuring in Statement : 
discrete-type: discrete-type(T), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
prop: ℙ, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
function-discrete, 
discrete-type_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
independent_functionElimination, 
hypothesis, 
because_Cache, 
isectElimination, 
universeEquality
Latex:
\mforall{}A,B:Type.    (discrete-type(B)  {}\mRightarrow{}  discrete-type(A  {}\mrightarrow{}  B))
 Date html generated: 
2018_05_22-PM-02_14_50
 Last ObjectModification: 
2017_10_29-PM-07_39_32
Theory : reals
Home
Index