Nuprl Lemma : discrete-type_wf

[T:Type]. (discrete-type(T) ∈ ℙ)


Proof




Definitions occuring in Statement :  discrete-type: discrete-type(T) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T discrete-type: discrete-type(T) so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s] all: x:A. B[x]
Lemmas referenced :  all_wf real_wf req_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesis cumulativity hypothesisEquality lambdaEquality because_Cache applyEquality functionExtensionality axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  (discrete-type(T)  \mmember{}  \mBbbP{})



Date html generated: 2018_05_22-PM-02_13_13
Last ObjectModification: 2017_10_27-PM-01_12_17

Theory : reals


Home Index