Nuprl Lemma : discrete-type_wf
∀[T:Type]. (discrete-type(T) ∈ ℙ)
Proof
Definitions occuring in Statement : 
discrete-type: discrete-type(T)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
discrete-type: discrete-type(T)
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
all_wf, 
real_wf, 
req_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
hypothesis, 
cumulativity, 
hypothesisEquality, 
lambdaEquality, 
because_Cache, 
applyEquality, 
functionExtensionality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[T:Type].  (discrete-type(T)  \mmember{}  \mBbbP{})
Date html generated:
2018_05_22-PM-02_13_13
Last ObjectModification:
2017_10_27-PM-01_12_17
Theory : reals
Home
Index