Nuprl Lemma : function-discrete

A:Type. ∀B:A ⟶ Type.  ((∀a:A. discrete-type(B[a]))  discrete-type(a:A ⟶ B[a]))


Proof




Definitions occuring in Statement :  discrete-type: discrete-type(T) so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q discrete-type: discrete-type(T) member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] guard: {T}
Lemmas referenced :  real_wf all_wf req_wf equal_wf discrete-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut functionExtensionality hypothesisEquality hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality functionEquality cumulativity applyEquality universeEquality dependent_functionElimination independent_functionElimination

Latex:
\mforall{}A:Type.  \mforall{}B:A  {}\mrightarrow{}  Type.    ((\mforall{}a:A.  discrete-type(B[a]))  {}\mRightarrow{}  discrete-type(a:A  {}\mrightarrow{}  B[a]))



Date html generated: 2018_05_22-PM-02_14_36
Last ObjectModification: 2017_10_29-PM-07_38_10

Theory : reals


Home Index