Nuprl Lemma : function-discrete
∀A:Type. ∀B:A ⟶ Type.  ((∀a:A. discrete-type(B[a])) 
⇒ discrete-type(a:A ⟶ B[a]))
Proof
Definitions occuring in Statement : 
discrete-type: discrete-type(T)
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
discrete-type: discrete-type(T)
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
Lemmas referenced : 
real_wf, 
all_wf, 
req_wf, 
equal_wf, 
discrete-type_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
functionExtensionality, 
hypothesisEquality, 
hypothesis, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
cumulativity, 
applyEquality, 
universeEquality, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}A:Type.  \mforall{}B:A  {}\mrightarrow{}  Type.    ((\mforall{}a:A.  discrete-type(B[a]))  {}\mRightarrow{}  discrete-type(a:A  {}\mrightarrow{}  B[a]))
Date html generated:
2018_05_22-PM-02_14_36
Last ObjectModification:
2017_10_29-PM-07_38_10
Theory : reals
Home
Index