Nuprl Lemma : i-approx-rep2
∀I:Interval. ∀n:ℕ+.  ∃a,b:ℝ. (i-approx(I;n) = [a, b] ∈ Interval)
Proof
Definitions occuring in Statement : 
i-approx: i-approx(I;n)
, 
rccint: [l, u]
, 
interval: Interval
, 
real: ℝ
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
Lemmas referenced : 
i-closed-finite-rep, 
i-approx_wf, 
i-approx-closed, 
i-approx-finite, 
nat_plus_wf, 
interval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
because_Cache
Latex:
\mforall{}I:Interval.  \mforall{}n:\mBbbN{}\msupplus{}.    \mexists{}a,b:\mBbbR{}.  (i-approx(I;n)  =  [a,  b])
Date html generated:
2016_05_18-AM-08_48_44
Last ObjectModification:
2015_12_27-PM-11_45_27
Theory : reals
Home
Index