Nuprl Lemma : i-approx-rep2

I:Interval. ∀n:ℕ+.  ∃a,b:ℝ(i-approx(I;n) [a, b] ∈ Interval)


Proof




Definitions occuring in Statement :  i-approx: i-approx(I;n) rccint: [l, u] interval: Interval real: nat_plus: + all: x:A. B[x] exists: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] implies:  Q
Lemmas referenced :  i-closed-finite-rep i-approx_wf i-approx-closed i-approx-finite nat_plus_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality hypothesis independent_functionElimination because_Cache

Latex:
\mforall{}I:Interval.  \mforall{}n:\mBbbN{}\msupplus{}.    \mexists{}a,b:\mBbbR{}.  (i-approx(I;n)  =  [a,  b])



Date html generated: 2016_05_18-AM-08_48_44
Last ObjectModification: 2015_12_27-PM-11_45_27

Theory : reals


Home Index